@polybiouslabs/polybious
Version:
Polybius is a next-generation intelligent agent framework built for adaptability across diverse domains. It merges contextual awareness, multi-agent collaboration, and predictive reasoning to deliver dynamic, self-optimizing performance.
730 lines (604 loc) • 26.7 kB
JavaScript
import { logger } from '../config/logger.js';
import * as fs from 'fs/promises';
import * as path from 'path';
export class ScenarioSimulationEngine {
scenarios = new Map();
models = new Map();
historicalData = [];
simulationPath;
constructor() {
this.simulationPath = path.join('data', 'simulations', 'scenarios.json');
this.initializeModels();
this.loadSimulations();
}
async runScenario(description, parameters = {}) {
const scenarioId = `sim_${Date.now()}_${Math.random().toString(36).substring(7)}`;
logger.info(`Running scenario simulation: ${description}`);
const scenario = {
id: scenarioId,
description,
parameters,
timestamp: new Date(),
status: 'running'
};
this.scenarios.set(scenarioId, scenario);
try {
// Analyze scenario type and select appropriate model
const scenarioType = this.classifyScenario(description);
const model = this.models.get(scenarioType) || this.models.get('general');
// Run simulation
const result = await this.executeSimulation(scenario, model);
scenario.status = 'completed';
scenario.result = result;
scenario.completedAt = new Date();
await this.saveSimulations();
logger.info(`Scenario simulation completed`, {
id: scenarioId,
trend: result.trend,
confidence: result.confidence
});
return result;
} catch (error) {
scenario.status = 'failed';
scenario.error = error.message;
logger.error(`Scenario simulation failed`, { id: scenarioId, error: error.message });
throw error;
}
}
async trainModel(historicalData, modelType = 'general') {
logger.info(`Training model: ${modelType} with ${historicalData.length} data points`);
const model = this.models.get(modelType) || this.createNewModel(modelType);
// Process training data
const processedData = this.preprocessTrainingData(historicalData, modelType);
// Update model weights and patterns
await this.updateModelWeights(model, processedData);
// Validate model performance
const validation = await this.validateModel(model, processedData);
model.lastTrained = new Date();
model.accuracy = validation.accuracy;
model.dataPoints = historicalData.length;
this.models.set(modelType, model);
logger.info(`Model training completed`, {
modelType,
accuracy: validation.accuracy,
dataPoints: historicalData.length
});
return validation;
}
async getRecommendations(currentState, scenarioType = 'general') {
const model = this.models.get(scenarioType) || this.models.get('general');
const analysis = await this.analyzeCurrentState(currentState, model);
const recommendations = [];
// Generate actionable recommendations based on analysis
if (analysis.risk > 0.7) {
recommendations.push({
type: 'risk_mitigation',
priority: 'high',
action: 'Implement risk mitigation strategies immediately',
impact: 'Reduces potential negative outcomes by 40-60%',
confidence: analysis.confidence
});
}
if (analysis.opportunities.length > 0) {
analysis.opportunities.forEach(opp => {
recommendations.push({
type: 'opportunity',
priority: opp.priority || 'medium',
action: opp.description,
impact: opp.expectedImpact || 'Moderate positive impact expected',
confidence: opp.confidence || 0.6
});
});
}
if (analysis.trends.length > 0) {
const strongTrends = analysis.trends.filter(t => t.strength > 0.6);
strongTrends.forEach(trend => {
recommendations.push({
type: 'trend_alignment',
priority: 'medium',
action: `Align strategy with ${trend.direction} trend in ${trend.area}`,
impact: `Potential ${trend.direction === 'positive' ? 'growth' : 'protection'} of 20-40%`,
confidence: trend.strength
});
});
}
return {
timestamp: new Date(),
scenarioType,
currentState: analysis.stateScore,
recommendations: recommendations.sort((a, b) => {
const priorityOrder = { high: 3, medium: 2, low: 1 };
return (priorityOrder[b.priority] || 0) - (priorityOrder[a.priority] || 0);
}),
overallConfidence: recommendations.reduce((sum, r) => sum + r.confidence, 0) / recommendations.length || 0
};
}
async executeSimulation(scenario, model) {
// Extract key variables from scenario description
const variables = this.extractScenarioVariables(scenario.description);
// Apply model predictions
const basePrediction = await this.applyModel(model, variables, scenario.parameters);
// Add uncertainty and noise
const uncertainty = this.calculateUncertainty(variables, model);
const finalPrediction = this.applyUncertainty(basePrediction, uncertainty);
// Determine trend direction and confidence
const trend = this.determineTrend(finalPrediction);
const confidence = Math.max(0.1, Math.min(0.95, basePrediction.confidence * (1 - uncertainty)));
return {
trend,
confidence,
prediction: finalPrediction,
factors: variables,
modelUsed: model.type,
uncertainty,
details: {
riskScore: finalPrediction.risk || 0.3,
opportunityScore: finalPrediction.opportunity || 0.4,
timeHorizon: scenario.parameters.timeHorizon || '3-6 months',
keyDrivers: finalPrediction.keyDrivers || ['market_conditions', 'resource_availability'],
alternativeOutcomes: this.generateAlternatives(finalPrediction)
}
};
}
classifyScenario(description) {
const desc = description.toLowerCase();
if (desc.includes('market') || desc.includes('sales') || desc.includes('revenue')) {
return 'market';
}
if (desc.includes('risk') || desc.includes('threat') || desc.includes('security')) {
return 'risk';
}
if (desc.includes('user') || desc.includes('customer') || desc.includes('engagement')) {
return 'behavioral';
}
if (desc.includes('resource') || desc.includes('capacity') || desc.includes('performance')) {
return 'operational';
}
if (desc.includes('trend') || desc.includes('future') || desc.includes('forecast')) {
return 'predictive';
}
return 'general';
}
extractScenarioVariables(description) {
const variables = {
timeFrame: this.extractTimeFrame(description),
domain: this.classifyScenario(description),
complexity: this.assessComplexity(description),
stakeholders: this.identifyStakeholders(description),
resources: this.identifyResources(description)
};
return variables;
}
extractTimeFrame(description) {
const timePatterns = [
{ pattern: /(\d+)\s*(day|week|month|year)s?/i, multiplier: { day: 1, week: 7, month: 30, year: 365 } },
{ pattern: /short.?term/i, value: 30 },
{ pattern: /medium.?term/i, value: 90 },
{ pattern: /long.?term/i, value: 365 },
{ pattern: /immediate/i, value: 7 },
{ pattern: /quarter/i, value: 90 }
];
for (const { pattern, multiplier, value } of timePatterns) {
const match = description.match(pattern);
if (match) {
if (multiplier && match[2]) {
return parseInt(match[1]) * multiplier[match[2].toLowerCase()];
}
if (value) return value;
}
}
return 60; // Default: 2 months
}
assessComplexity(description) {
let complexity = 0.3; // Base complexity
const complexityIndicators = [
'multiple', 'various', 'complex', 'intricate', 'sophisticated',
'interdependent', 'cascading', 'systemic', 'comprehensive'
];
complexityIndicators.forEach(indicator => {
if (description.toLowerCase().includes(indicator)) {
complexity += 0.1;
}
});
return Math.min(1.0, complexity);
}
identifyStakeholders(description) {
const stakeholderPatterns = [
'customer', 'user', 'client', 'team', 'employee', 'manager',
'investor', 'partner', 'supplier', 'competitor', 'regulator'
];
return stakeholderPatterns.filter(pattern =>
description.toLowerCase().includes(pattern)
);
}
identifyResources(description) {
const resourcePatterns = [
'budget', 'time', 'staff', 'technology', 'data', 'infrastructure',
'capital', 'expertise', 'tools', 'platform'
];
return resourcePatterns.filter(pattern =>
description.toLowerCase().includes(pattern)
);
}
async applyModel(model, variables, parameters) {
const baseScore = 0.5;
let prediction = {
score: baseScore,
confidence: 0.7,
risk: 0.3,
opportunity: 0.4,
keyDrivers: []
};
// Apply model-specific logic
if (model.type === 'market') {
prediction = this.applyMarketModel(prediction, variables, parameters);
} else if (model.type === 'behavioral') {
prediction = this.applyBehavioralModel(prediction, variables, parameters);
} else if (model.type === 'risk') {
prediction = this.applyRiskModel(prediction, variables, parameters);
} else {
prediction = this.applyGeneralModel(prediction, variables, parameters);
}
// Apply historical patterns from model
if (model.patterns && model.patterns.length > 0) {
const patternAdjustment = this.applyHistoricalPatterns(prediction, model.patterns, variables);
prediction.score = (prediction.score + patternAdjustment.score) / 2;
prediction.confidence *= patternAdjustment.confidenceMultiplier;
}
return prediction;
}
applyMarketModel(prediction, variables, parameters) {
// Market-specific predictions
if (variables.timeFrame < 30) {
prediction.confidence *= 0.9; // Short-term market predictions are less certain
}
if (variables.stakeholders.includes('competitor')) {
prediction.risk += 0.1;
}
if (variables.resources.includes('budget') || variables.resources.includes('capital')) {
prediction.opportunity += 0.1;
}
prediction.keyDrivers = ['market_conditions', 'competition', 'economic_factors'];
return prediction;
}
applyBehavioralModel(prediction, variables, parameters) {
// User behavior predictions
if (variables.stakeholders.includes('user') || variables.stakeholders.includes('customer')) {
prediction.score += 0.1;
}
if (variables.complexity > 0.7) {
prediction.confidence *= 0.8; // Complex behavioral scenarios are harder to predict
}
prediction.keyDrivers = ['user_preferences', 'engagement_patterns', 'adoption_rate'];
return prediction;
}
applyRiskModel(prediction, variables, parameters) {
// Risk assessment predictions
prediction.risk += variables.complexity * 0.2;
if (variables.timeFrame > 180) {
prediction.risk += 0.1; // Longer timeframes increase uncertainty
}
prediction.keyDrivers = ['threat_likelihood', 'impact_severity', 'mitigation_effectiveness'];
return prediction;
}
applyGeneralModel(prediction, variables, parameters) {
// General-purpose predictions
prediction.score += (variables.resources.length * 0.05);
prediction.risk += (variables.complexity - 0.5) * 0.1;
prediction.keyDrivers = ['resource_availability', 'execution_capability', 'external_factors'];
return prediction;
}
applyHistoricalPatterns(prediction, patterns, variables) {
let scoreAdjustment = 0;
let confidenceMultiplier = 1;
patterns.forEach(pattern => {
const similarity = this.calculatePatternSimilarity(pattern.variables, variables);
if (similarity > 0.5) {
scoreAdjustment += (pattern.outcome - 0.5) * similarity * 0.2;
confidenceMultiplier += similarity * 0.1;
}
});
return {
score: Math.max(0, Math.min(1, prediction.score + scoreAdjustment)),
confidenceMultiplier: Math.min(1.2, confidenceMultiplier)
};
}
calculatePatternSimilarity(patternVars, currentVars) {
let similarity = 0;
let comparisons = 0;
// Compare domains
if (patternVars.domain === currentVars.domain) {
similarity += 0.3;
}
comparisons++;
// Compare complexity
const complexityDiff = Math.abs(patternVars.complexity - currentVars.complexity);
similarity += Math.max(0, (1 - complexityDiff)) * 0.2;
comparisons++;
// Compare time frames
const timeDiff = Math.abs(patternVars.timeFrame - currentVars.timeFrame) / Math.max(patternVars.timeFrame, currentVars.timeFrame);
similarity += Math.max(0, (1 - timeDiff)) * 0.2;
comparisons++;
// Compare stakeholders
const commonStakeholders = patternVars.stakeholders.filter(s => currentVars.stakeholders.includes(s));
if (patternVars.stakeholders.length > 0 || currentVars.stakeholders.length > 0) {
similarity += (commonStakeholders.length / Math.max(patternVars.stakeholders.length, currentVars.stakeholders.length)) * 0.3;
comparisons++;
}
return comparisons > 0 ? similarity / comparisons : 0;
}
calculateUncertainty(variables, model) {
let uncertainty = 0.1; // Base uncertainty
// Time horizon affects uncertainty
if (variables.timeFrame > 90) uncertainty += 0.1;
if (variables.timeFrame > 365) uncertainty += 0.2;
// Complexity affects uncertainty
uncertainty += variables.complexity * 0.2;
// Model confidence
if (model.accuracy < 0.7) uncertainty += 0.1;
// Stakeholder complexity
if (variables.stakeholders.length > 3) uncertainty += 0.1;
return Math.min(0.5, uncertainty);
}
applyUncertainty(prediction, uncertainty) {
const noiseFactor = (Math.random() - 0.5) * uncertainty;
return {
...prediction,
score: Math.max(0.1, Math.min(0.9, prediction.score + noiseFactor)),
confidence: Math.max(0.1, prediction.confidence - uncertainty / 2)
};
}
determineTrend(prediction) {
if (prediction.score > 0.6) {
return prediction.score > 0.8 ? 'strong_positive' : 'positive';
} else if (prediction.score < 0.4) {
return prediction.score < 0.2 ? 'strong_negative' : 'negative';
}
return 'neutral';
}
generateAlternatives(prediction) {
const alternatives = [];
// Optimistic scenario
alternatives.push({
name: 'optimistic',
probability: 0.2,
outcome: Math.min(0.9, prediction.score + 0.2),
description: 'Best-case scenario with favorable conditions'
});
// Pessimistic scenario
alternatives.push({
name: 'pessimistic',
probability: 0.2,
outcome: Math.max(0.1, prediction.score - 0.2),
description: 'Worst-case scenario with adverse conditions'
});
// Most likely scenario
alternatives.push({
name: 'most_likely',
probability: 0.6,
outcome: prediction.score,
description: 'Expected outcome based on current trends'
});
return alternatives;
}
async analyzeCurrentState(currentState, model) {
const stateScore = this.calculateStateScore(currentState);
const risk = this.assessRisk(currentState, model);
const opportunities = await this.identifyOpportunities(currentState, model);
const trends = await this.identifyTrends(currentState, model);
return {
stateScore,
risk,
opportunities,
trends,
confidence: Math.min(0.9, model.accuracy || 0.6)
};
}
calculateStateScore(state) {
if (typeof state === 'number') return Math.max(0, Math.min(1, state));
if (typeof state === 'object' && state !== null) {
const metrics = Object.values(state).filter(v => typeof v === 'number');
return metrics.length > 0 ? metrics.reduce((sum, v) => sum + v, 0) / metrics.length : 0.5;
}
return 0.5; // Default neutral score
}
assessRisk(currentState, model) {
let risk = 0.3; // Base risk
if (model.type === 'risk') {
risk = 0.5; // Higher base risk for risk-focused models
}
// Analyze state for risk indicators
if (typeof currentState === 'object' && currentState !== null) {
if (currentState.volatility > 0.7) risk += 0.2;
if (currentState.uncertainty > 0.6) risk += 0.1;
if (currentState.externalThreats > 0.5) risk += 0.15;
}
return Math.min(0.9, risk);
}
async identifyOpportunities(currentState, model) {
const opportunities = [];
// Generic opportunity identification
if (typeof currentState === 'object' && currentState !== null) {
if (currentState.growth > 0.6) {
opportunities.push({
description: 'Leverage current growth momentum',
priority: 'high',
expectedImpact: 'Significant positive impact on outcomes',
confidence: 0.7
});
}
if (currentState.efficiency < 0.5 && currentState.resources > 0.6) {
opportunities.push({
description: 'Optimize resource utilization',
priority: 'medium',
expectedImpact: 'Improve efficiency by 20-30%',
confidence: 0.6
});
}
if (currentState.marketPosition > 0.7) {
opportunities.push({
description: 'Expand market presence',
priority: 'medium',
expectedImpact: 'Potential market share increase',
confidence: 0.5
});
}
}
return opportunities;
}
async identifyTrends(currentState, model) {
const trends = [];
// Analyze historical patterns to identify trends
if (this.historicalData.length > 0) {
const recentData = this.historicalData.slice(-10);
// Simple trend analysis
if (recentData.length >= 3) {
const values = recentData.map(d => d.value || 0.5);
const isIncreasing = values.slice(-3).every((val, i, arr) => i === 0 || val >= arr[i - 1]);
const isDecreasing = values.slice(-3).every((val, i, arr) => i === 0 || val <= arr[i - 1]);
if (isIncreasing) {
trends.push({
area: 'performance',
direction: 'positive',
strength: 0.7,
description: 'Consistent upward trend detected'
});
} else if (isDecreasing) {
trends.push({
area: 'performance',
direction: 'negative',
strength: 0.6,
description: 'Declining trend detected'
});
}
}
}
return trends;
}
initializeModels() {
const modelTypes = ['general', 'market', 'behavioral', 'risk', 'operational', 'predictive'];
modelTypes.forEach(type => {
this.models.set(type, {
type,
accuracy: 0.6 + Math.random() * 0.2, // 60-80% base accuracy
patterns: [],
weights: this.initializeWeights(),
lastTrained: new Date(),
dataPoints: 0
});
});
}
initializeWeights() {
return {
timeWeight: 0.2,
complexityWeight: 0.3,
stakeholderWeight: 0.2,
resourceWeight: 0.2,
historyWeight: 0.1
};
}
createNewModel(modelType) {
const model = {
type: modelType,
accuracy: 0.5,
patterns: [],
weights: this.initializeWeights(),
lastTrained: new Date(),
dataPoints: 0
};
this.models.set(modelType, model);
return model;
}
preprocessTrainingData(data, modelType) {
return data.map(item => ({
variables: this.extractScenarioVariables(item.description || ''),
outcome: item.outcome || 0.5,
timestamp: new Date(item.timestamp || Date.now())
}));
}
async updateModelWeights(model, processedData) {
if (processedData.length === 0) return;
// Simple weight adjustment based on outcomes
const avgOutcome = processedData.reduce((sum, item) => sum + item.outcome, 0) / processedData.length;
if (avgOutcome > 0.6) {
model.weights.resourceWeight += 0.05;
model.weights.stakeholderWeight += 0.05;
} else if (avgOutcome < 0.4) {
model.weights.complexityWeight += 0.05;
model.weights.timeWeight += 0.05;
}
// Normalize weights
const totalWeight = Object.values(model.weights).reduce((sum, w) => sum + w, 0);
Object.keys(model.weights).forEach(key => {
model.weights[key] /= totalWeight;
});
// Store patterns
model.patterns = processedData;
}
async validateModel(model, data) {
if (data.length < 2) {
return { accuracy: 0.5, testSamples: data.length };
}
// Simple validation: use 70% for training, 30% for testing
const testSize = Math.max(1, Math.floor(data.length * 0.3));
const testData = data.slice(-testSize);
let correctPredictions = 0;
for (const testItem of testData) {
const prediction = await this.applyModel(model, testItem.variables, {});
const predicted = prediction.score > 0.5 ? 1 : 0;
const actual = testItem.outcome > 0.5 ? 1 : 0;
if (predicted === actual) {
correctPredictions++;
}
}
const accuracy = correctPredictions / testData.length;
return { accuracy, testSamples: testData.length };
}
async loadSimulations() {
try {
await fs.mkdir(path.dirname(this.simulationPath), { recursive: true });
const data = await fs.readFile(this.simulationPath, 'utf8');
const parsed = JSON.parse(data);
if (parsed.scenarios) {
parsed.scenarios.forEach(scenario => {
scenario.timestamp = new Date(scenario.timestamp);
if (scenario.completedAt) scenario.completedAt = new Date(scenario.completedAt);
this.scenarios.set(scenario.id, scenario);
});
}
if (parsed.models) {
parsed.models.forEach(([type, model]) => {
model.lastTrained = new Date(model.lastTrained);
if (model.patterns) {
model.patterns.forEach(pattern => {
pattern.timestamp = new Date(pattern.timestamp);
});
}
this.models.set(type, model);
});
}
if (parsed.historicalData) {
this.historicalData = parsed.historicalData.map(item => ({
...item,
timestamp: new Date(item.timestamp)
}));
}
logger.info(`Loaded ${this.scenarios.size} scenarios and ${this.models.size} models`);
} catch (error) {
logger.debug('No existing simulation file found, starting fresh');
}
}
async saveSimulations() {
try {
const data = {
scenarios: Array.from(this.scenarios.values()),
models: Array.from(this.models.entries()),
historicalData: this.historicalData,
savedAt: new Date().toISOString()
};
await fs.writeFile(this.simulationPath, JSON.stringify(data, null, 2));
} catch (error) {
logger.error('Failed to save simulations', { error });
}
}
}