UNPKG

@polybiouslabs/polybious

Version:

Polybius is a next-generation intelligent agent framework built for adaptability across diverse domains. It merges contextual awareness, multi-agent collaboration, and predictive reasoning to deliver dynamic, self-optimizing performance.

730 lines (604 loc) 26.7 kB
import { logger } from '../config/logger.js'; import * as fs from 'fs/promises'; import * as path from 'path'; export class ScenarioSimulationEngine { scenarios = new Map(); models = new Map(); historicalData = []; simulationPath; constructor() { this.simulationPath = path.join('data', 'simulations', 'scenarios.json'); this.initializeModels(); this.loadSimulations(); } async runScenario(description, parameters = {}) { const scenarioId = `sim_${Date.now()}_${Math.random().toString(36).substring(7)}`; logger.info(`Running scenario simulation: ${description}`); const scenario = { id: scenarioId, description, parameters, timestamp: new Date(), status: 'running' }; this.scenarios.set(scenarioId, scenario); try { // Analyze scenario type and select appropriate model const scenarioType = this.classifyScenario(description); const model = this.models.get(scenarioType) || this.models.get('general'); // Run simulation const result = await this.executeSimulation(scenario, model); scenario.status = 'completed'; scenario.result = result; scenario.completedAt = new Date(); await this.saveSimulations(); logger.info(`Scenario simulation completed`, { id: scenarioId, trend: result.trend, confidence: result.confidence }); return result; } catch (error) { scenario.status = 'failed'; scenario.error = error.message; logger.error(`Scenario simulation failed`, { id: scenarioId, error: error.message }); throw error; } } async trainModel(historicalData, modelType = 'general') { logger.info(`Training model: ${modelType} with ${historicalData.length} data points`); const model = this.models.get(modelType) || this.createNewModel(modelType); // Process training data const processedData = this.preprocessTrainingData(historicalData, modelType); // Update model weights and patterns await this.updateModelWeights(model, processedData); // Validate model performance const validation = await this.validateModel(model, processedData); model.lastTrained = new Date(); model.accuracy = validation.accuracy; model.dataPoints = historicalData.length; this.models.set(modelType, model); logger.info(`Model training completed`, { modelType, accuracy: validation.accuracy, dataPoints: historicalData.length }); return validation; } async getRecommendations(currentState, scenarioType = 'general') { const model = this.models.get(scenarioType) || this.models.get('general'); const analysis = await this.analyzeCurrentState(currentState, model); const recommendations = []; // Generate actionable recommendations based on analysis if (analysis.risk > 0.7) { recommendations.push({ type: 'risk_mitigation', priority: 'high', action: 'Implement risk mitigation strategies immediately', impact: 'Reduces potential negative outcomes by 40-60%', confidence: analysis.confidence }); } if (analysis.opportunities.length > 0) { analysis.opportunities.forEach(opp => { recommendations.push({ type: 'opportunity', priority: opp.priority || 'medium', action: opp.description, impact: opp.expectedImpact || 'Moderate positive impact expected', confidence: opp.confidence || 0.6 }); }); } if (analysis.trends.length > 0) { const strongTrends = analysis.trends.filter(t => t.strength > 0.6); strongTrends.forEach(trend => { recommendations.push({ type: 'trend_alignment', priority: 'medium', action: `Align strategy with ${trend.direction} trend in ${trend.area}`, impact: `Potential ${trend.direction === 'positive' ? 'growth' : 'protection'} of 20-40%`, confidence: trend.strength }); }); } return { timestamp: new Date(), scenarioType, currentState: analysis.stateScore, recommendations: recommendations.sort((a, b) => { const priorityOrder = { high: 3, medium: 2, low: 1 }; return (priorityOrder[b.priority] || 0) - (priorityOrder[a.priority] || 0); }), overallConfidence: recommendations.reduce((sum, r) => sum + r.confidence, 0) / recommendations.length || 0 }; } async executeSimulation(scenario, model) { // Extract key variables from scenario description const variables = this.extractScenarioVariables(scenario.description); // Apply model predictions const basePrediction = await this.applyModel(model, variables, scenario.parameters); // Add uncertainty and noise const uncertainty = this.calculateUncertainty(variables, model); const finalPrediction = this.applyUncertainty(basePrediction, uncertainty); // Determine trend direction and confidence const trend = this.determineTrend(finalPrediction); const confidence = Math.max(0.1, Math.min(0.95, basePrediction.confidence * (1 - uncertainty))); return { trend, confidence, prediction: finalPrediction, factors: variables, modelUsed: model.type, uncertainty, details: { riskScore: finalPrediction.risk || 0.3, opportunityScore: finalPrediction.opportunity || 0.4, timeHorizon: scenario.parameters.timeHorizon || '3-6 months', keyDrivers: finalPrediction.keyDrivers || ['market_conditions', 'resource_availability'], alternativeOutcomes: this.generateAlternatives(finalPrediction) } }; } classifyScenario(description) { const desc = description.toLowerCase(); if (desc.includes('market') || desc.includes('sales') || desc.includes('revenue')) { return 'market'; } if (desc.includes('risk') || desc.includes('threat') || desc.includes('security')) { return 'risk'; } if (desc.includes('user') || desc.includes('customer') || desc.includes('engagement')) { return 'behavioral'; } if (desc.includes('resource') || desc.includes('capacity') || desc.includes('performance')) { return 'operational'; } if (desc.includes('trend') || desc.includes('future') || desc.includes('forecast')) { return 'predictive'; } return 'general'; } extractScenarioVariables(description) { const variables = { timeFrame: this.extractTimeFrame(description), domain: this.classifyScenario(description), complexity: this.assessComplexity(description), stakeholders: this.identifyStakeholders(description), resources: this.identifyResources(description) }; return variables; } extractTimeFrame(description) { const timePatterns = [ { pattern: /(\d+)\s*(day|week|month|year)s?/i, multiplier: { day: 1, week: 7, month: 30, year: 365 } }, { pattern: /short.?term/i, value: 30 }, { pattern: /medium.?term/i, value: 90 }, { pattern: /long.?term/i, value: 365 }, { pattern: /immediate/i, value: 7 }, { pattern: /quarter/i, value: 90 } ]; for (const { pattern, multiplier, value } of timePatterns) { const match = description.match(pattern); if (match) { if (multiplier && match[2]) { return parseInt(match[1]) * multiplier[match[2].toLowerCase()]; } if (value) return value; } } return 60; // Default: 2 months } assessComplexity(description) { let complexity = 0.3; // Base complexity const complexityIndicators = [ 'multiple', 'various', 'complex', 'intricate', 'sophisticated', 'interdependent', 'cascading', 'systemic', 'comprehensive' ]; complexityIndicators.forEach(indicator => { if (description.toLowerCase().includes(indicator)) { complexity += 0.1; } }); return Math.min(1.0, complexity); } identifyStakeholders(description) { const stakeholderPatterns = [ 'customer', 'user', 'client', 'team', 'employee', 'manager', 'investor', 'partner', 'supplier', 'competitor', 'regulator' ]; return stakeholderPatterns.filter(pattern => description.toLowerCase().includes(pattern) ); } identifyResources(description) { const resourcePatterns = [ 'budget', 'time', 'staff', 'technology', 'data', 'infrastructure', 'capital', 'expertise', 'tools', 'platform' ]; return resourcePatterns.filter(pattern => description.toLowerCase().includes(pattern) ); } async applyModel(model, variables, parameters) { const baseScore = 0.5; let prediction = { score: baseScore, confidence: 0.7, risk: 0.3, opportunity: 0.4, keyDrivers: [] }; // Apply model-specific logic if (model.type === 'market') { prediction = this.applyMarketModel(prediction, variables, parameters); } else if (model.type === 'behavioral') { prediction = this.applyBehavioralModel(prediction, variables, parameters); } else if (model.type === 'risk') { prediction = this.applyRiskModel(prediction, variables, parameters); } else { prediction = this.applyGeneralModel(prediction, variables, parameters); } // Apply historical patterns from model if (model.patterns && model.patterns.length > 0) { const patternAdjustment = this.applyHistoricalPatterns(prediction, model.patterns, variables); prediction.score = (prediction.score + patternAdjustment.score) / 2; prediction.confidence *= patternAdjustment.confidenceMultiplier; } return prediction; } applyMarketModel(prediction, variables, parameters) { // Market-specific predictions if (variables.timeFrame < 30) { prediction.confidence *= 0.9; // Short-term market predictions are less certain } if (variables.stakeholders.includes('competitor')) { prediction.risk += 0.1; } if (variables.resources.includes('budget') || variables.resources.includes('capital')) { prediction.opportunity += 0.1; } prediction.keyDrivers = ['market_conditions', 'competition', 'economic_factors']; return prediction; } applyBehavioralModel(prediction, variables, parameters) { // User behavior predictions if (variables.stakeholders.includes('user') || variables.stakeholders.includes('customer')) { prediction.score += 0.1; } if (variables.complexity > 0.7) { prediction.confidence *= 0.8; // Complex behavioral scenarios are harder to predict } prediction.keyDrivers = ['user_preferences', 'engagement_patterns', 'adoption_rate']; return prediction; } applyRiskModel(prediction, variables, parameters) { // Risk assessment predictions prediction.risk += variables.complexity * 0.2; if (variables.timeFrame > 180) { prediction.risk += 0.1; // Longer timeframes increase uncertainty } prediction.keyDrivers = ['threat_likelihood', 'impact_severity', 'mitigation_effectiveness']; return prediction; } applyGeneralModel(prediction, variables, parameters) { // General-purpose predictions prediction.score += (variables.resources.length * 0.05); prediction.risk += (variables.complexity - 0.5) * 0.1; prediction.keyDrivers = ['resource_availability', 'execution_capability', 'external_factors']; return prediction; } applyHistoricalPatterns(prediction, patterns, variables) { let scoreAdjustment = 0; let confidenceMultiplier = 1; patterns.forEach(pattern => { const similarity = this.calculatePatternSimilarity(pattern.variables, variables); if (similarity > 0.5) { scoreAdjustment += (pattern.outcome - 0.5) * similarity * 0.2; confidenceMultiplier += similarity * 0.1; } }); return { score: Math.max(0, Math.min(1, prediction.score + scoreAdjustment)), confidenceMultiplier: Math.min(1.2, confidenceMultiplier) }; } calculatePatternSimilarity(patternVars, currentVars) { let similarity = 0; let comparisons = 0; // Compare domains if (patternVars.domain === currentVars.domain) { similarity += 0.3; } comparisons++; // Compare complexity const complexityDiff = Math.abs(patternVars.complexity - currentVars.complexity); similarity += Math.max(0, (1 - complexityDiff)) * 0.2; comparisons++; // Compare time frames const timeDiff = Math.abs(patternVars.timeFrame - currentVars.timeFrame) / Math.max(patternVars.timeFrame, currentVars.timeFrame); similarity += Math.max(0, (1 - timeDiff)) * 0.2; comparisons++; // Compare stakeholders const commonStakeholders = patternVars.stakeholders.filter(s => currentVars.stakeholders.includes(s)); if (patternVars.stakeholders.length > 0 || currentVars.stakeholders.length > 0) { similarity += (commonStakeholders.length / Math.max(patternVars.stakeholders.length, currentVars.stakeholders.length)) * 0.3; comparisons++; } return comparisons > 0 ? similarity / comparisons : 0; } calculateUncertainty(variables, model) { let uncertainty = 0.1; // Base uncertainty // Time horizon affects uncertainty if (variables.timeFrame > 90) uncertainty += 0.1; if (variables.timeFrame > 365) uncertainty += 0.2; // Complexity affects uncertainty uncertainty += variables.complexity * 0.2; // Model confidence if (model.accuracy < 0.7) uncertainty += 0.1; // Stakeholder complexity if (variables.stakeholders.length > 3) uncertainty += 0.1; return Math.min(0.5, uncertainty); } applyUncertainty(prediction, uncertainty) { const noiseFactor = (Math.random() - 0.5) * uncertainty; return { ...prediction, score: Math.max(0.1, Math.min(0.9, prediction.score + noiseFactor)), confidence: Math.max(0.1, prediction.confidence - uncertainty / 2) }; } determineTrend(prediction) { if (prediction.score > 0.6) { return prediction.score > 0.8 ? 'strong_positive' : 'positive'; } else if (prediction.score < 0.4) { return prediction.score < 0.2 ? 'strong_negative' : 'negative'; } return 'neutral'; } generateAlternatives(prediction) { const alternatives = []; // Optimistic scenario alternatives.push({ name: 'optimistic', probability: 0.2, outcome: Math.min(0.9, prediction.score + 0.2), description: 'Best-case scenario with favorable conditions' }); // Pessimistic scenario alternatives.push({ name: 'pessimistic', probability: 0.2, outcome: Math.max(0.1, prediction.score - 0.2), description: 'Worst-case scenario with adverse conditions' }); // Most likely scenario alternatives.push({ name: 'most_likely', probability: 0.6, outcome: prediction.score, description: 'Expected outcome based on current trends' }); return alternatives; } async analyzeCurrentState(currentState, model) { const stateScore = this.calculateStateScore(currentState); const risk = this.assessRisk(currentState, model); const opportunities = await this.identifyOpportunities(currentState, model); const trends = await this.identifyTrends(currentState, model); return { stateScore, risk, opportunities, trends, confidence: Math.min(0.9, model.accuracy || 0.6) }; } calculateStateScore(state) { if (typeof state === 'number') return Math.max(0, Math.min(1, state)); if (typeof state === 'object' && state !== null) { const metrics = Object.values(state).filter(v => typeof v === 'number'); return metrics.length > 0 ? metrics.reduce((sum, v) => sum + v, 0) / metrics.length : 0.5; } return 0.5; // Default neutral score } assessRisk(currentState, model) { let risk = 0.3; // Base risk if (model.type === 'risk') { risk = 0.5; // Higher base risk for risk-focused models } // Analyze state for risk indicators if (typeof currentState === 'object' && currentState !== null) { if (currentState.volatility > 0.7) risk += 0.2; if (currentState.uncertainty > 0.6) risk += 0.1; if (currentState.externalThreats > 0.5) risk += 0.15; } return Math.min(0.9, risk); } async identifyOpportunities(currentState, model) { const opportunities = []; // Generic opportunity identification if (typeof currentState === 'object' && currentState !== null) { if (currentState.growth > 0.6) { opportunities.push({ description: 'Leverage current growth momentum', priority: 'high', expectedImpact: 'Significant positive impact on outcomes', confidence: 0.7 }); } if (currentState.efficiency < 0.5 && currentState.resources > 0.6) { opportunities.push({ description: 'Optimize resource utilization', priority: 'medium', expectedImpact: 'Improve efficiency by 20-30%', confidence: 0.6 }); } if (currentState.marketPosition > 0.7) { opportunities.push({ description: 'Expand market presence', priority: 'medium', expectedImpact: 'Potential market share increase', confidence: 0.5 }); } } return opportunities; } async identifyTrends(currentState, model) { const trends = []; // Analyze historical patterns to identify trends if (this.historicalData.length > 0) { const recentData = this.historicalData.slice(-10); // Simple trend analysis if (recentData.length >= 3) { const values = recentData.map(d => d.value || 0.5); const isIncreasing = values.slice(-3).every((val, i, arr) => i === 0 || val >= arr[i - 1]); const isDecreasing = values.slice(-3).every((val, i, arr) => i === 0 || val <= arr[i - 1]); if (isIncreasing) { trends.push({ area: 'performance', direction: 'positive', strength: 0.7, description: 'Consistent upward trend detected' }); } else if (isDecreasing) { trends.push({ area: 'performance', direction: 'negative', strength: 0.6, description: 'Declining trend detected' }); } } } return trends; } initializeModels() { const modelTypes = ['general', 'market', 'behavioral', 'risk', 'operational', 'predictive']; modelTypes.forEach(type => { this.models.set(type, { type, accuracy: 0.6 + Math.random() * 0.2, // 60-80% base accuracy patterns: [], weights: this.initializeWeights(), lastTrained: new Date(), dataPoints: 0 }); }); } initializeWeights() { return { timeWeight: 0.2, complexityWeight: 0.3, stakeholderWeight: 0.2, resourceWeight: 0.2, historyWeight: 0.1 }; } createNewModel(modelType) { const model = { type: modelType, accuracy: 0.5, patterns: [], weights: this.initializeWeights(), lastTrained: new Date(), dataPoints: 0 }; this.models.set(modelType, model); return model; } preprocessTrainingData(data, modelType) { return data.map(item => ({ variables: this.extractScenarioVariables(item.description || ''), outcome: item.outcome || 0.5, timestamp: new Date(item.timestamp || Date.now()) })); } async updateModelWeights(model, processedData) { if (processedData.length === 0) return; // Simple weight adjustment based on outcomes const avgOutcome = processedData.reduce((sum, item) => sum + item.outcome, 0) / processedData.length; if (avgOutcome > 0.6) { model.weights.resourceWeight += 0.05; model.weights.stakeholderWeight += 0.05; } else if (avgOutcome < 0.4) { model.weights.complexityWeight += 0.05; model.weights.timeWeight += 0.05; } // Normalize weights const totalWeight = Object.values(model.weights).reduce((sum, w) => sum + w, 0); Object.keys(model.weights).forEach(key => { model.weights[key] /= totalWeight; }); // Store patterns model.patterns = processedData; } async validateModel(model, data) { if (data.length < 2) { return { accuracy: 0.5, testSamples: data.length }; } // Simple validation: use 70% for training, 30% for testing const testSize = Math.max(1, Math.floor(data.length * 0.3)); const testData = data.slice(-testSize); let correctPredictions = 0; for (const testItem of testData) { const prediction = await this.applyModel(model, testItem.variables, {}); const predicted = prediction.score > 0.5 ? 1 : 0; const actual = testItem.outcome > 0.5 ? 1 : 0; if (predicted === actual) { correctPredictions++; } } const accuracy = correctPredictions / testData.length; return { accuracy, testSamples: testData.length }; } async loadSimulations() { try { await fs.mkdir(path.dirname(this.simulationPath), { recursive: true }); const data = await fs.readFile(this.simulationPath, 'utf8'); const parsed = JSON.parse(data); if (parsed.scenarios) { parsed.scenarios.forEach(scenario => { scenario.timestamp = new Date(scenario.timestamp); if (scenario.completedAt) scenario.completedAt = new Date(scenario.completedAt); this.scenarios.set(scenario.id, scenario); }); } if (parsed.models) { parsed.models.forEach(([type, model]) => { model.lastTrained = new Date(model.lastTrained); if (model.patterns) { model.patterns.forEach(pattern => { pattern.timestamp = new Date(pattern.timestamp); }); } this.models.set(type, model); }); } if (parsed.historicalData) { this.historicalData = parsed.historicalData.map(item => ({ ...item, timestamp: new Date(item.timestamp) })); } logger.info(`Loaded ${this.scenarios.size} scenarios and ${this.models.size} models`); } catch (error) { logger.debug('No existing simulation file found, starting fresh'); } } async saveSimulations() { try { const data = { scenarios: Array.from(this.scenarios.values()), models: Array.from(this.models.entries()), historicalData: this.historicalData, savedAt: new Date().toISOString() }; await fs.writeFile(this.simulationPath, JSON.stringify(data, null, 2)); } catch (error) { logger.error('Failed to save simulations', { error }); } } }