UNPKG

@polybiouslabs/polybious

Version:

Polybius is a next-generation intelligent agent framework built for adaptability across diverse domains. It merges contextual awareness, multi-agent collaboration, and predictive reasoning to deliver dynamic, self-optimizing performance.

258 lines (232 loc) 6.98 kB
export interface ReasoningTrace { id: string; timestamp: Date; decision?: any; context: any; evidence?: any; explanation?: Explanation; confidence: number; reasoning_chain: ReasoningStep[]; alternative_paths: AlternativePath[]; } export interface Explanation { summary: string; detailed_reasoning: DetailedReasoning[]; supporting_evidence: EvidenceItem[]; confidence_explanation: ConfidenceFactor[]; risk_factors: string[]; assumptions_made: string[]; template_used: string; } export interface DetailedReasoning { step: string; description: string; factors?: string[]; key_evidence?: string[]; logic?: string; alternatives_count?: number; impact: 'low' | 'medium' | 'high' | 'critical'; } export interface EvidenceItem { factor: string; value: any; reliability: number; importance: number; source: string; description: string; } export interface ConfidenceFactor { factor: string; score: number; description: string; } export interface ReasoningStep { step: number; type: string; description: string; state?: any; inputs?: string[]; outputs?: any; } export interface AlternativePath { alternative: any; feasibility: number; expected_outcome: any; trade_offs: string[]; risk_level: number; why_not_chosen: string; } export interface PredictionExplanation { id: string; timestamp: Date; prediction: any; inputData: any; model_info: any; feature_importance: FeatureImportance[]; confidence_factors: ConfidenceFactor[]; sensitivity_analysis: SensitivityAnalysis[]; example_influences: SimilarExample[]; human_readable_explanation: string; } export interface FeatureImportance { feature: string; value: any; importance: number; influence: number; explanation: string; } export interface SensitivityAnalysis { feature: string; baseline_value: number; variations: Array<{ change: number; new_value: number; predicted_impact: number; }>; sensitivity_score: number; } export interface SimilarExample { decision_id: string; similarity: number; outcome: any; timestamp: Date; } export interface ReasoningPath { id: string; timestamp: Date; query: string; steps: ProcessedStep[]; logical_flow: LogicalFlow; assumptions: Assumption[]; evidence_quality: EvidenceQuality; gaps_and_limitations: Gap[]; alternative_interpretations: AlternativeInterpretation[]; } export interface ProcessedStep { step_number: number; description: string; logic_type: string; evidence_used: any[]; assumptions: string[]; confidence: number; } export interface LogicalFlow { is_coherent: boolean; logical_gaps: Array<{ between_steps: [number, number]; issue: string; severity: number; }>; reasoning_type: 'deductive' | 'inductive' | 'abductive'; flow_quality: number; } export interface Assumption { assumption: string; step: string; validity: number; impact: number; } export interface EvidenceQuality { average_quality: number; evidence_count: number; quality_distribution: any; } export interface Gap { type: 'logical_gap' | 'missing_evidence'; location: string; description: string; severity: 'low' | 'medium' | 'high'; } export interface AlternativeInterpretation { framework: string; reasoning: string; conclusion: string; confidence: number; } export interface ActionSequenceExplanation { id: string; timestamp: Date; actions: any[]; context: any; outcomes: any[]; action_analysis: any; decision_points: any[]; causal_relationships: any[]; optimization_suggestions: string[]; counterfactual_analysis: any; } export interface Insights { timestamp: Date; domain: string; timeframe: string; total_decisions_analyzed: number; patterns: Pattern[]; trends: Trend[]; anomalies: Anomaly[]; recommendations: Recommendation[]; confidence_metrics: ConfidenceMetrics; key_insights: string[]; } export interface Pattern { type: string; description: string; confidence: number; } export interface Trend { type: string; description: string; magnitude: number; } export interface Anomaly { decision_id: string; type: string; severity: string; description: string; } export interface Recommendation { type: string; priority: 'low' | 'medium' | 'high'; description: string; expected_impact: string; } export interface ConfidenceMetrics { sample_size_adequacy: number; data_quality: number; temporal_coverage: number; } export declare class ExplainableAI { reasoningTraces: Map<string, ReasoningTrace>; decisionHistory: Array<{ id: string; timestamp: Date; decision: any; confidence: number; }>; explanationTemplates: Map<string, any>; insightCache: Map<string, any>; explanationsPath: string; constructor(); explainDecision(decision: any, context: any, evidence?: any): Promise<ReasoningTrace>; explainPrediction(prediction: any, inputData: any, model_info?: any): Promise<PredictionExplanation>; generateReasoningPath(query: string, steps?: any[]): Promise<ReasoningPath>; explainActionSequence(actions: any[], context: any, outcomes?: any[]): Promise<ActionSequenceExplanation>; generateInsights(domain?: string, timeframe?: string): Promise<Insights>; generateExplanation(decision: any, context: any, evidence: any): Promise<Explanation>; generateExplanationSummary(decision: any, context: any, evidence: any): Promise<string>; generateDetailedReasoning(decision: any, context: any, evidence: any): Promise<DetailedReasoning[]>; formatSupportingEvidence(evidence: any): EvidenceItem[]; explainConfidence(decision: any, evidence: any): ConfidenceFactor[]; buildReasoningChain(decision: any, context: any, evidence: any): ReasoningStep[]; analyzeAlternatives(decision: any, context: any, evidence: any): Promise<AlternativePath[]>; analyzeFeatureImportance(inputData: any, prediction: any, model_info: any): Promise<FeatureImportance[]>; identifyConfidenceFactors(prediction: any, inputData: any): ConfidenceFactor[]; performSensitivityAnalysis(inputData: any, prediction: any, model_info: any): Promise<SensitivityAnalysis[]>; findSimilarExamples(inputData: any): SimilarExample[]; generateHumanReadableExplanation(prediction: any, inputData: any, model_info: any): Promise<string>; initializeTemplates(): void; normalizeContext(context: any): any; normalizeInputData(inputData: any): any; calculateExplanationConfidence(decision: any, evidence: any): number; loadExplanationData(): Promise<void>; saveExplanationData(): Promise<void>; }