UNPKG

@polybiouslabs/polybious

Version:

Polybius is a next-generation intelligent agent framework built for adaptability across diverse domains. It merges contextual awareness, multi-agent collaboration, and predictive reasoning to deliver dynamic, self-optimizing performance.

152 lines (142 loc) 4.8 kB
export interface Behavior { action: any; context: any; value: number; confidence: number; experiences: number; lastUpdated: Date; createdAt: Date; personalLearningRate: number; contextSensitivity: number; explorationTendency: number; } export interface Experience { id: string; timestamp: Date; action: any; context: any; outcome: any; feedback: any; reward: number; processed: boolean; } export interface Policy { defaultAction: string; confidence: number; actions: Map<string, ActionData>; created: Date; } export interface ActionData { value: number; count: number; lastSeen: Date; } export interface ActionSuggestion { action: any; confidence: number; reasoning: string; explorationRate: number; timestamp: Date; } export interface Mutation { type: 'value_adjustment' | 'learning_rate' | 'context_sensitivity' | 'exploration_strategy'; valueChange?: number; confidenceChange?: number; learningRateMultiplier?: number; sensitivityChange?: number; explorationMultiplier?: number; } export interface EvolutionRoundResult { round: number; mutationsTested: number; improvements: number; bestImprovement: number; improvementDetails: Array<{ behaviorKey: string; improvement: number; mutation: Mutation; }>; } export interface EvolutionResult { rounds: number; results: EvolutionRoundResult[]; overallImprovement: { totalImprovements: number; avgImprovementPerRound: number; bestImprovement: number; consistency: number; }; finalStats: BehaviorStats; } export interface BehaviorStats { totalBehaviors: number; totalPolicies: number; totalExperiences: number; averageConfidence: number; learningRate: number; explorationRate: number; topBehaviors: Array<{ behaviorKey: string; value: number; confidence: number; experiences: number; }>; recentLearning: { recentExperiences: number; averageReward: number; positiveExperiences: number; negativeExperiences: number; }; } export declare class BehavioralEvolutionModel { behaviors: Map<string, Behavior>; rewards: Map<string, any>; policies: Map<string, Policy>; experiences: Experience[]; evolutionPath: string; learningRate: number; explorationRate: number; decayRate: number; constructor(learningRate?: number, explorationRate?: number, decayRate?: number); recordExperience(action: any, context: any, outcome: any, feedback: any): Promise<string>; processExperience(experience: Experience): Promise<void>; suggestAction(context: any, availableActions?: any[]): Promise<ActionSuggestion>; evolveStrategy(evolutionRounds?: number): Promise<EvolutionResult>; performEvolutionRound(roundNumber: number): Promise<EvolutionRoundResult>; generateMutation(behavior: Behavior): Mutation; testMutation(mutationData: any): Promise<{ improvement: number; confidence: number; mutated?: Behavior }>; applyMutation(behavior: Behavior, mutation: Mutation): Behavior; calculateBehaviorPerformance(behavior: Behavior, experiences: Experience[]): number; applyEvolutionResults(roundResults: EvolutionRoundResult): Promise<void>; calculateReward(outcome: any, feedback: any): number; normalizeContext(context: any): any; getBehaviorKey(action: any, context: any): string; getContextKey(context: any): string; createNewBehavior(action: any, context: any): Behavior; updateBehavior(behavior: Behavior, reward: number): void; createDefaultPolicy(): Policy; updatePolicies(action: any, context: any, reward: number): Promise<void>; getBestAction(policy: Policy, availableActions: any[], context: any): any; generateExploratoryAction(context: any): string; calculateActionConfidence(action: any, context: any): number; explainActionChoice(action: any, policy: Policy, context: any): string; calculateOverallImprovement(evolutionResults: EvolutionRoundResult[]): any; calculateImprovementConsistency(evolutionResults: EvolutionRoundResult[]): number; calculateAverageConfidence(): number; getBehaviorStats(): BehaviorStats; getTopBehaviors(limit?: number): Array<{ behaviorKey: string; value: number; confidence: number; experiences: number; }>; getRecentLearningStats(): { recentExperiences: number; averageReward: number; positiveExperiences: number; negativeExperiences: number; }; initializeBehaviors(): void; loadEvolutionData(): Promise<void>; saveEvolutionData(): Promise<void>; }