UNPKG

@pod-protocol/sdk

Version:

TypeScript SDK for PoD Protocol - AI agent communication on Solana

1,385 lines (1,371 loc) 42.8 kB
'use strict'; var base$1 = require('../base-4VR-G3Dc.js'); var keccak = require('keccak'); require('../types-OQd1rGtn.js'); require('node:events'); require('ws'); function equals$1(aa, bb) { if (aa === bb) { return true; } if (aa.byteLength !== bb.byteLength) { return false; } for (let ii = 0; ii < aa.byteLength; ii++) { if (aa[ii] !== bb[ii]) { return false; } } return true; } function coerce(o) { if (o instanceof Uint8Array && o.constructor.name === 'Uint8Array') { return o; } if (o instanceof ArrayBuffer) { return new Uint8Array(o); } if (ArrayBuffer.isView(o)) { return new Uint8Array(o.buffer, o.byteOffset, o.byteLength); } throw new Error('Unknown type, must be binary type'); } /* eslint-disable */ // base-x encoding / decoding // Copyright (c) 2018 base-x contributors // Copyright (c) 2014-2018 The Bitcoin Core developers (base58.cpp) // Distributed under the MIT software license, see the accompanying // file LICENSE or http://www.opensource.org/licenses/mit-license.php. /** * @param {string} ALPHABET * @param {any} name */ function base(ALPHABET, name) { if (ALPHABET.length >= 255) { throw new TypeError('Alphabet too long'); } var BASE_MAP = new Uint8Array(256); for (var j = 0; j < BASE_MAP.length; j++) { BASE_MAP[j] = 255; } for (var i = 0; i < ALPHABET.length; i++) { var x = ALPHABET.charAt(i); var xc = x.charCodeAt(0); if (BASE_MAP[xc] !== 255) { throw new TypeError(x + ' is ambiguous'); } BASE_MAP[xc] = i; } var BASE = ALPHABET.length; var LEADER = ALPHABET.charAt(0); var FACTOR = Math.log(BASE) / Math.log(256); // log(BASE) / log(256), rounded up var iFACTOR = Math.log(256) / Math.log(BASE); // log(256) / log(BASE), rounded up /** * @param {any[] | Iterable<number>} source */ function encode(source) { // @ts-ignore if (source instanceof Uint8Array) ; else if (ArrayBuffer.isView(source)) { source = new Uint8Array(source.buffer, source.byteOffset, source.byteLength); } else if (Array.isArray(source)) { source = Uint8Array.from(source); } if (!(source instanceof Uint8Array)) { throw new TypeError('Expected Uint8Array'); } if (source.length === 0) { return ''; } // Skip & count leading zeroes. var zeroes = 0; var length = 0; var pbegin = 0; var pend = source.length; while (pbegin !== pend && source[pbegin] === 0) { pbegin++; zeroes++; } // Allocate enough space in big-endian base58 representation. var size = ((pend - pbegin) * iFACTOR + 1) >>> 0; var b58 = new Uint8Array(size); // Process the bytes. while (pbegin !== pend) { var carry = source[pbegin]; // Apply "b58 = b58 * 256 + ch". var i = 0; for (var it1 = size - 1; (carry !== 0 || i < length) && (it1 !== -1); it1--, i++) { carry += (256 * b58[it1]) >>> 0; b58[it1] = (carry % BASE) >>> 0; carry = (carry / BASE) >>> 0; } if (carry !== 0) { throw new Error('Non-zero carry'); } length = i; pbegin++; } // Skip leading zeroes in base58 result. var it2 = size - length; while (it2 !== size && b58[it2] === 0) { it2++; } // Translate the result into a string. var str = LEADER.repeat(zeroes); for (; it2 < size; ++it2) { str += ALPHABET.charAt(b58[it2]); } return str; } /** * @param {string | string[]} source */ function decodeUnsafe(source) { if (typeof source !== 'string') { throw new TypeError('Expected String'); } if (source.length === 0) { return new Uint8Array(); } var psz = 0; // Skip leading spaces. if (source[psz] === ' ') { return; } // Skip and count leading '1's. var zeroes = 0; var length = 0; while (source[psz] === LEADER) { zeroes++; psz++; } // Allocate enough space in big-endian base256 representation. var size = (((source.length - psz) * FACTOR) + 1) >>> 0; // log(58) / log(256), rounded up. var b256 = new Uint8Array(size); // Process the characters. while (source[psz]) { // Decode character var carry = BASE_MAP[source.charCodeAt(psz)]; // Invalid character if (carry === 255) { return; } var i = 0; for (var it3 = size - 1; (carry !== 0 || i < length) && (it3 !== -1); it3--, i++) { carry += (BASE * b256[it3]) >>> 0; b256[it3] = (carry % 256) >>> 0; carry = (carry / 256) >>> 0; } if (carry !== 0) { throw new Error('Non-zero carry'); } length = i; psz++; } // Skip trailing spaces. if (source[psz] === ' ') { return; } // Skip leading zeroes in b256. var it4 = size - length; while (it4 !== size && b256[it4] === 0) { it4++; } var vch = new Uint8Array(zeroes + (size - it4)); var j = zeroes; while (it4 !== size) { vch[j++] = b256[it4++]; } return vch; } /** * @param {string | string[]} string */ function decode(string) { var buffer = decodeUnsafe(string); if (buffer) { return buffer; } throw new Error(`Non-${name} character`); } return { encode: encode, decodeUnsafe: decodeUnsafe, decode: decode }; } var src = base; var _brrp__multiformats_scope_baseX = src; /** * Class represents both BaseEncoder and MultibaseEncoder meaning it * can be used to encode to multibase or base encode without multibase * prefix. */ class Encoder { name; prefix; baseEncode; constructor(name, prefix, baseEncode) { this.name = name; this.prefix = prefix; this.baseEncode = baseEncode; } encode(bytes) { if (bytes instanceof Uint8Array) { return `${this.prefix}${this.baseEncode(bytes)}`; } else { throw Error('Unknown type, must be binary type'); } } } /** * Class represents both BaseDecoder and MultibaseDecoder so it could be used * to decode multibases (with matching prefix) or just base decode strings * with corresponding base encoding. */ class Decoder { name; prefix; baseDecode; prefixCodePoint; constructor(name, prefix, baseDecode) { this.name = name; this.prefix = prefix; const prefixCodePoint = prefix.codePointAt(0); /* c8 ignore next 3 */ if (prefixCodePoint === undefined) { throw new Error('Invalid prefix character'); } this.prefixCodePoint = prefixCodePoint; this.baseDecode = baseDecode; } decode(text) { if (typeof text === 'string') { if (text.codePointAt(0) !== this.prefixCodePoint) { throw Error(`Unable to decode multibase string ${JSON.stringify(text)}, ${this.name} decoder only supports inputs prefixed with ${this.prefix}`); } return this.baseDecode(text.slice(this.prefix.length)); } else { throw Error('Can only multibase decode strings'); } } or(decoder) { return or(this, decoder); } } class ComposedDecoder { decoders; constructor(decoders) { this.decoders = decoders; } or(decoder) { return or(this, decoder); } decode(input) { const prefix = input[0]; const decoder = this.decoders[prefix]; if (decoder != null) { return decoder.decode(input); } else { throw RangeError(`Unable to decode multibase string ${JSON.stringify(input)}, only inputs prefixed with ${Object.keys(this.decoders)} are supported`); } } } function or(left, right) { return new ComposedDecoder({ ...(left.decoders ?? { [left.prefix]: left }), ...(right.decoders ?? { [right.prefix]: right }) }); } class Codec { name; prefix; baseEncode; baseDecode; encoder; decoder; constructor(name, prefix, baseEncode, baseDecode) { this.name = name; this.prefix = prefix; this.baseEncode = baseEncode; this.baseDecode = baseDecode; this.encoder = new Encoder(name, prefix, baseEncode); this.decoder = new Decoder(name, prefix, baseDecode); } encode(input) { return this.encoder.encode(input); } decode(input) { return this.decoder.decode(input); } } function from({ name, prefix, encode, decode }) { return new Codec(name, prefix, encode, decode); } function baseX({ name, prefix, alphabet }) { const { encode, decode } = _brrp__multiformats_scope_baseX(alphabet, name); return from({ prefix, name, encode, decode: (text) => coerce(decode(text)) }); } function decode$3(string, alphabetIdx, bitsPerChar, name) { // Count the padding bytes: let end = string.length; while (string[end - 1] === '=') { --end; } // Allocate the output: const out = new Uint8Array((end * bitsPerChar / 8) | 0); // Parse the data: let bits = 0; // Number of bits currently in the buffer let buffer = 0; // Bits waiting to be written out, MSB first let written = 0; // Next byte to write for (let i = 0; i < end; ++i) { // Read one character from the string: const value = alphabetIdx[string[i]]; if (value === undefined) { throw new SyntaxError(`Non-${name} character`); } // Append the bits to the buffer: buffer = (buffer << bitsPerChar) | value; bits += bitsPerChar; // Write out some bits if the buffer has a byte's worth: if (bits >= 8) { bits -= 8; out[written++] = 0xff & (buffer >> bits); } } // Verify that we have received just enough bits: if (bits >= bitsPerChar || (0xff & (buffer << (8 - bits))) !== 0) { throw new SyntaxError('Unexpected end of data'); } return out; } function encode$1(data, alphabet, bitsPerChar) { const pad = alphabet[alphabet.length - 1] === '='; const mask = (1 << bitsPerChar) - 1; let out = ''; let bits = 0; // Number of bits currently in the buffer let buffer = 0; // Bits waiting to be written out, MSB first for (let i = 0; i < data.length; ++i) { // Slurp data into the buffer: buffer = (buffer << 8) | data[i]; bits += 8; // Write out as much as we can: while (bits > bitsPerChar) { bits -= bitsPerChar; out += alphabet[mask & (buffer >> bits)]; } } // Partial character: if (bits !== 0) { out += alphabet[mask & (buffer << (bitsPerChar - bits))]; } // Add padding characters until we hit a byte boundary: if (pad) { while (((out.length * bitsPerChar) & 7) !== 0) { out += '='; } } return out; } function createAlphabetIdx(alphabet) { // Build the character lookup table: const alphabetIdx = {}; for (let i = 0; i < alphabet.length; ++i) { alphabetIdx[alphabet[i]] = i; } return alphabetIdx; } /** * RFC4648 Factory */ function rfc4648({ name, prefix, bitsPerChar, alphabet }) { const alphabetIdx = createAlphabetIdx(alphabet); return from({ prefix, name, encode(input) { return encode$1(input, alphabet, bitsPerChar); }, decode(input) { return decode$3(input, alphabetIdx, bitsPerChar, name); } }); } const base32 = rfc4648({ prefix: 'b', name: 'base32', alphabet: 'abcdefghijklmnopqrstuvwxyz234567', bitsPerChar: 5 }); rfc4648({ prefix: 'B', name: 'base32upper', alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567', bitsPerChar: 5 }); rfc4648({ prefix: 'c', name: 'base32pad', alphabet: 'abcdefghijklmnopqrstuvwxyz234567=', bitsPerChar: 5 }); rfc4648({ prefix: 'C', name: 'base32padupper', alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567=', bitsPerChar: 5 }); rfc4648({ prefix: 'v', name: 'base32hex', alphabet: '0123456789abcdefghijklmnopqrstuv', bitsPerChar: 5 }); rfc4648({ prefix: 'V', name: 'base32hexupper', alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUV', bitsPerChar: 5 }); rfc4648({ prefix: 't', name: 'base32hexpad', alphabet: '0123456789abcdefghijklmnopqrstuv=', bitsPerChar: 5 }); rfc4648({ prefix: 'T', name: 'base32hexpadupper', alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUV=', bitsPerChar: 5 }); rfc4648({ prefix: 'h', name: 'base32z', alphabet: 'ybndrfg8ejkmcpqxot1uwisza345h769', bitsPerChar: 5 }); const base36 = baseX({ prefix: 'k', name: 'base36', alphabet: '0123456789abcdefghijklmnopqrstuvwxyz' }); baseX({ prefix: 'K', name: 'base36upper', alphabet: '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' }); const base58btc = baseX({ name: 'base58btc', prefix: 'z', alphabet: '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' }); baseX({ name: 'base58flickr', prefix: 'Z', alphabet: '123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ' }); /* eslint-disable */ var encode_1 = encode; var MSB = 0x80, MSBALL = -128, INT = Math.pow(2, 31); /** * @param {number} num * @param {number[]} out * @param {number} offset */ function encode(num, out, offset) { out = out || []; offset = offset || 0; var oldOffset = offset; while (num >= INT) { out[offset++] = (num & 0xFF) | MSB; num /= 128; } while (num & MSBALL) { out[offset++] = (num & 0xFF) | MSB; num >>>= 7; } out[offset] = num | 0; // @ts-ignore encode.bytes = offset - oldOffset + 1; return out; } var decode$2 = read; var MSB$1 = 0x80, REST$1 = 0x7F; /** * @param {string | any[]} buf * @param {number} offset */ function read(buf, offset) { var res = 0, offset = offset || 0, shift = 0, counter = offset, b, l = buf.length; do { if (counter >= l) { // @ts-ignore read.bytes = 0; throw new RangeError('Could not decode varint'); } b = buf[counter++]; res += shift < 28 ? (b & REST$1) << shift : (b & REST$1) * Math.pow(2, shift); shift += 7; } while (b >= MSB$1); // @ts-ignore read.bytes = counter - offset; return res; } var N1 = Math.pow(2, 7); var N2 = Math.pow(2, 14); var N3 = Math.pow(2, 21); var N4 = Math.pow(2, 28); var N5 = Math.pow(2, 35); var N6 = Math.pow(2, 42); var N7 = Math.pow(2, 49); var N8 = Math.pow(2, 56); var N9 = Math.pow(2, 63); var length = function (/** @type {number} */ value) { return (value < N1 ? 1 : value < N2 ? 2 : value < N3 ? 3 : value < N4 ? 4 : value < N5 ? 5 : value < N6 ? 6 : value < N7 ? 7 : value < N8 ? 8 : value < N9 ? 9 : 10); }; var varint = { encode: encode_1, decode: decode$2, encodingLength: length }; var _brrp_varint = varint; function decode$1(data, offset = 0) { const code = _brrp_varint.decode(data, offset); return [code, _brrp_varint.decode.bytes]; } function encodeTo(int, target, offset = 0) { _brrp_varint.encode(int, target, offset); return target; } function encodingLength(int) { return _brrp_varint.encodingLength(int); } /** * Creates a multihash digest. */ function create(code, digest) { const size = digest.byteLength; const sizeOffset = encodingLength(code); const digestOffset = sizeOffset + encodingLength(size); const bytes = new Uint8Array(digestOffset + size); encodeTo(code, bytes, 0); encodeTo(size, bytes, sizeOffset); bytes.set(digest, digestOffset); return new Digest(code, size, digest, bytes); } /** * Turns bytes representation of multihash digest into an instance. */ function decode(multihash) { const bytes = coerce(multihash); const [code, sizeOffset] = decode$1(bytes); const [size, digestOffset] = decode$1(bytes.subarray(sizeOffset)); const digest = bytes.subarray(sizeOffset + digestOffset); if (digest.byteLength !== size) { throw new Error('Incorrect length'); } return new Digest(code, size, digest, bytes); } function equals(a, b) { if (a === b) { return true; } else { const data = b; return (a.code === data.code && a.size === data.size && data.bytes instanceof Uint8Array && equals$1(a.bytes, data.bytes)); } } /** * Represents a multihash digest which carries information about the * hashing algorithm and an actual hash digest. */ class Digest { code; size; digest; bytes; /** * Creates a multihash digest. */ constructor(code, size, digest, bytes) { this.code = code; this.size = size; this.digest = digest; this.bytes = bytes; } } function format(link, base) { const { bytes, version } = link; switch (version) { case 0: return toStringV0(bytes, baseCache(link), base ?? base58btc.encoder); default: return toStringV1(bytes, baseCache(link), (base ?? base32.encoder)); } } const cache = new WeakMap(); function baseCache(cid) { const baseCache = cache.get(cid); if (baseCache == null) { const baseCache = new Map(); cache.set(cid, baseCache); return baseCache; } return baseCache; } class CID { code; version; multihash; bytes; '/'; /** * @param version - Version of the CID * @param code - Code of the codec content is encoded in, see https://github.com/multiformats/multicodec/blob/master/table.csv * @param multihash - (Multi)hash of the of the content. */ constructor(version, code, multihash, bytes) { this.code = code; this.version = version; this.multihash = multihash; this.bytes = bytes; // flag to serializers that this is a CID and // should be treated specially this['/'] = bytes; } /** * Signalling `cid.asCID === cid` has been replaced with `cid['/'] === cid.bytes` * please either use `CID.asCID(cid)` or switch to new signalling mechanism * * @deprecated */ get asCID() { return this; } // ArrayBufferView get byteOffset() { return this.bytes.byteOffset; } // ArrayBufferView get byteLength() { return this.bytes.byteLength; } toV0() { switch (this.version) { case 0: { return this; } case 1: { const { code, multihash } = this; if (code !== DAG_PB_CODE) { throw new Error('Cannot convert a non dag-pb CID to CIDv0'); } // sha2-256 if (multihash.code !== SHA_256_CODE) { throw new Error('Cannot convert non sha2-256 multihash CID to CIDv0'); } return (CID.createV0(multihash)); } default: { throw Error(`Can not convert CID version ${this.version} to version 0. This is a bug please report`); } } } toV1() { switch (this.version) { case 0: { const { code, digest } = this.multihash; const multihash = create(code, digest); return (CID.createV1(this.code, multihash)); } case 1: { return this; } default: { throw Error(`Can not convert CID version ${this.version} to version 1. This is a bug please report`); } } } equals(other) { return CID.equals(this, other); } static equals(self, other) { const unknown = other; return (unknown != null && self.code === unknown.code && self.version === unknown.version && equals(self.multihash, unknown.multihash)); } toString(base) { return format(this, base); } toJSON() { return { '/': format(this) }; } link() { return this; } [Symbol.toStringTag] = 'CID'; // Legacy [Symbol.for('nodejs.util.inspect.custom')]() { return `CID(${this.toString()})`; } /** * Takes any input `value` and returns a `CID` instance if it was * a `CID` otherwise returns `null`. If `value` is instanceof `CID` * it will return value back. If `value` is not instance of this CID * class, but is compatible CID it will return new instance of this * `CID` class. Otherwise returns null. * * This allows two different incompatible versions of CID library to * co-exist and interop as long as binary interface is compatible. */ static asCID(input) { if (input == null) { return null; } const value = input; if (value instanceof CID) { // If value is instance of CID then we're all set. return value; } else if ((value['/'] != null && value['/'] === value.bytes) || value.asCID === value) { // If value isn't instance of this CID class but `this.asCID === this` or // `value['/'] === value.bytes` is true it is CID instance coming from a // different implementation (diff version or duplicate). In that case we // rebase it to this `CID` implementation so caller is guaranteed to get // instance with expected API. const { version, code, multihash, bytes } = value; return new CID(version, code, multihash, bytes ?? encodeCID(version, code, multihash.bytes)); } else if (value[cidSymbol] === true) { // If value is a CID from older implementation that used to be tagged via // symbol we still rebase it to the this `CID` implementation by // delegating that to a constructor. const { version, multihash, code } = value; const digest = decode(multihash); return CID.create(version, code, digest); } else { // Otherwise value is not a CID (or an incompatible version of it) in // which case we return `null`. return null; } } /** * @param version - Version of the CID * @param code - Code of the codec content is encoded in, see https://github.com/multiformats/multicodec/blob/master/table.csv * @param digest - (Multi)hash of the of the content. */ static create(version, code, digest) { if (typeof code !== 'number') { throw new Error('String codecs are no longer supported'); } if (!(digest.bytes instanceof Uint8Array)) { throw new Error('Invalid digest'); } switch (version) { case 0: { if (code !== DAG_PB_CODE) { throw new Error(`Version 0 CID must use dag-pb (code: ${DAG_PB_CODE}) block encoding`); } else { return new CID(version, code, digest, digest.bytes); } } case 1: { const bytes = encodeCID(version, code, digest.bytes); return new CID(version, code, digest, bytes); } default: { throw new Error('Invalid version'); } } } /** * Simplified version of `create` for CIDv0. */ static createV0(digest) { return CID.create(0, DAG_PB_CODE, digest); } /** * Simplified version of `create` for CIDv1. * * @param code - Content encoding format code. * @param digest - Multihash of the content. */ static createV1(code, digest) { return CID.create(1, code, digest); } /** * Decoded a CID from its binary representation. The byte array must contain * only the CID with no additional bytes. * * An error will be thrown if the bytes provided do not contain a valid * binary representation of a CID. */ static decode(bytes) { const [cid, remainder] = CID.decodeFirst(bytes); if (remainder.length !== 0) { throw new Error('Incorrect length'); } return cid; } /** * Decoded a CID from its binary representation at the beginning of a byte * array. * * Returns an array with the first element containing the CID and the second * element containing the remainder of the original byte array. The remainder * will be a zero-length byte array if the provided bytes only contained a * binary CID representation. */ static decodeFirst(bytes) { const specs = CID.inspectBytes(bytes); const prefixSize = specs.size - specs.multihashSize; const multihashBytes = coerce(bytes.subarray(prefixSize, prefixSize + specs.multihashSize)); if (multihashBytes.byteLength !== specs.multihashSize) { throw new Error('Incorrect length'); } const digestBytes = multihashBytes.subarray(specs.multihashSize - specs.digestSize); const digest = new Digest(specs.multihashCode, specs.digestSize, digestBytes, multihashBytes); const cid = specs.version === 0 ? CID.createV0(digest) : CID.createV1(specs.codec, digest); return [cid, bytes.subarray(specs.size)]; } /** * Inspect the initial bytes of a CID to determine its properties. * * Involves decoding up to 4 varints. Typically this will require only 4 to 6 * bytes but for larger multicodec code values and larger multihash digest * lengths these varints can be quite large. It is recommended that at least * 10 bytes be made available in the `initialBytes` argument for a complete * inspection. */ static inspectBytes(initialBytes) { let offset = 0; const next = () => { const [i, length] = decode$1(initialBytes.subarray(offset)); offset += length; return i; }; let version = next(); let codec = DAG_PB_CODE; if (version === 18) { // CIDv0 version = 0; offset = 0; } else { codec = next(); } if (version !== 0 && version !== 1) { throw new RangeError(`Invalid CID version ${version}`); } const prefixSize = offset; const multihashCode = next(); // multihash code const digestSize = next(); // multihash length const size = offset + digestSize; const multihashSize = size - prefixSize; return { version, codec, multihashCode, digestSize, multihashSize, size }; } /** * Takes cid in a string representation and creates an instance. If `base` * decoder is not provided will use a default from the configuration. It will * throw an error if encoding of the CID is not compatible with supplied (or * a default decoder). */ static parse(source, base) { const [prefix, bytes] = parseCIDtoBytes(source, base); const cid = CID.decode(bytes); if (cid.version === 0 && source[0] !== 'Q') { throw Error('Version 0 CID string must not include multibase prefix'); } // Cache string representation to avoid computing it on `this.toString()` baseCache(cid).set(prefix, source); return cid; } } function parseCIDtoBytes(source, base) { switch (source[0]) { // CIDv0 is parsed differently case 'Q': { const decoder = base ?? base58btc; return [ base58btc.prefix, decoder.decode(`${base58btc.prefix}${source}`) ]; } case base58btc.prefix: { const decoder = base ?? base58btc; return [base58btc.prefix, decoder.decode(source)]; } case base32.prefix: { const decoder = base ?? base32; return [base32.prefix, decoder.decode(source)]; } case base36.prefix: { const decoder = base ?? base36; return [base36.prefix, decoder.decode(source)]; } default: { if (base == null) { throw Error('To parse non base32, base36 or base58btc encoded CID multibase decoder must be provided'); } return [source[0], base.decode(source)]; } } } function toStringV0(bytes, cache, base) { const { prefix } = base; if (prefix !== base58btc.prefix) { throw Error(`Cannot string encode V0 in ${base.name} encoding`); } const cid = cache.get(prefix); if (cid == null) { const cid = base.encode(bytes).slice(1); cache.set(prefix, cid); return cid; } else { return cid; } } function toStringV1(bytes, cache, base) { const { prefix } = base; const cid = cache.get(prefix); if (cid == null) { const cid = base.encode(bytes); cache.set(prefix, cid); return cid; } else { return cid; } } const DAG_PB_CODE = 0x70; const SHA_256_CODE = 0x12; function encodeCID(version, code, multihash) { const codeOffset = encodingLength(version); const hashOffset = codeOffset + encodingLength(code); const bytes = new Uint8Array(hashOffset + multihash.byteLength); encodeTo(version, bytes, 0); encodeTo(code, bytes, codeOffset); bytes.set(multihash, hashOffset); return bytes; } const cidSymbol = Symbol.for('@ipld/js-cid/CID'); /** * IPFS Service for handling off-chain storage of PoD Protocol data * Integrates with ZK compression for cost-effective data management * Uses Helia (modern IPFS implementation) instead of deprecated js-IPFS */ class IPFSService extends base$1.BaseService { constructor(rpcUrl, programId, commitment, config = {}) { super(rpcUrl, programId, commitment); this.helia = null; this.fs = null; this.jsonStore = null; this.initPromise = null; this.config = { disabled: false, timeout: 30000, gatewayUrl: 'https://ipfs.io/ipfs', ...config }; } /** * Initialize Helia node and services */ async init() { if (this.initPromise) { return this.initPromise; } this.initPromise = (async () => { try { // Check if IPFS is disabled if (this.config.disabled) { console.warn('IPFS functionality is disabled'); return; // Skip initialization } // Create Helia with minimal configuration for Node.js CLI environments const config = this.config.heliaConfig || {}; // Try to create Helia with fallback error handling try { // Dynamic imports to avoid immediate native module loading const { createHelia } = await import('helia'); const { unixfs } = await import('@helia/unixfs'); const { json } = await import('@helia/json'); this.helia = await createHelia(config); this.fs = unixfs(this.helia); this.jsonStore = json(this.helia); } catch (nativeModuleError) { // If native modules fail, throw a more specific error console.warn('Warning: Native IPFS modules unavailable, IPFS features will be disabled'); throw new Error(`IPFS functionality requires native modules: ${nativeModuleError.message}`); } } catch (error) { throw new Error(`Failed to initialize Helia: ${error}`); } })(); return this.initPromise; } /** * Ensure Helia is initialized */ async ensureIPFSInitialized() { if (this.config.disabled) { throw new Error('IPFS functionality is disabled'); } await this.init(); } /** * Store channel message content on IPFS */ async storeMessageContent(content, attachments = [], metadata = {}) { const messageContent = { content, attachments, metadata, timestamp: Date.now(), version: '1.0.0', }; return this.storeJSON(messageContent); } /** * Store participant extended metadata on IPFS */ async storeParticipantMetadata(displayName, avatar, permissions = [], customData = {}) { const participantMetadata = { displayName, avatar, permissions, customData, lastUpdated: Date.now(), }; return this.storeJSON(participantMetadata); } /** * Store arbitrary JSON data on IPFS */ async storeJSON(data) { try { await this.ensureIPFSInitialized(); const cid = await this.jsonStore.add(data); // Get size by encoding the data const jsonString = JSON.stringify(data); const size = new TextEncoder().encode(jsonString).length; return { hash: cid, cid, size, url: `${this.config.gatewayUrl}/${cid}`, }; } catch (error) { throw new Error(`Failed to store data on IPFS: ${error}`); } } /** * Store raw file data on IPFS */ async storeFile(data, filename) { try { await this.ensureIPFSInitialized(); const cid = await this.fs.addBytes(data); return { hash: cid, cid, size: data.length, url: `${this.config.gatewayUrl}/${cid}`, }; } catch (error) { throw new Error(`Failed to store file on IPFS: ${error}`); } } /** * Retrieve JSON data from IPFS */ async retrieveJSON(hash) { try { await this.ensureIPFSInitialized(); const cid = CID.parse(hash); const data = await this.jsonStore.get(cid); return data; } catch (error) { throw new Error(`Failed to retrieve data from IPFS: ${error}`); } } /** * Retrieve message content from IPFS */ async retrieveMessageContent(hash) { return this.retrieveJSON(hash); } /** * Retrieve participant metadata from IPFS */ async retrieveParticipantMetadata(hash) { return this.retrieveJSON(hash); } /** * Retrieve raw file data from IPFS */ async retrieveFile(hash) { try { await this.ensureIPFSInitialized(); const cid = CID.parse(hash); const data = await this.fs.cat(cid); const chunks = []; for await (const chunk of data) { chunks.push(chunk); } return Buffer.concat(chunks); } catch (error) { throw new Error(`Failed to retrieve file from IPFS: ${error}`); } } /** * Pin content to ensure it stays available */ async pinContent(hash) { try { await this.ensureIPFSInitialized(); const cid = CID.parse(hash); await this.helia.pins.add(cid); } catch (error) { throw new Error(`Failed to pin content: ${error}`); } } /** * Unpin content to allow garbage collection */ async unpinContent(hash) { try { await this.ensureIPFSInitialized(); const cid = CID.parse(hash); await this.helia.pins.rm(cid); } catch (error) { throw new Error(`Failed to unpin content: ${error}`); } } /** * Get IPFS node info */ async getNodeInfo() { try { await this.ensureIPFSInitialized(); return { id: this.helia.libp2p.peerId, agentVersion: 'helia', protocolVersion: '1.0.0' }; } catch (error) { throw new Error(`Failed to get IPFS node info: ${error}`); } } /** * Check if content exists on IPFS */ async contentExists(hash) { try { await this.ensureIPFSInitialized(); const cid = CID.parse(hash); await this.fs.stat(cid); return true; } catch (error) { return false; } } /** * Store channel message content on IPFS */ async storeChannelMessageContent(content) { return this.storeJSON(content); } /** * Store participant extended metadata on IPFS */ async storeParticipantExtendedMetadata(metadata) { return this.storeJSON(metadata); } /** * Retrieve channel message content from IPFS */ async retrieveChannelMessageContent(hash) { return this.retrieveJSON(hash); } /** * Retrieve participant extended metadata from IPFS */ async retrieveParticipantExtendedMetadata(hash) { return this.retrieveJSON(hash); } /** * Cleanup resources */ async stop() { if (this.helia) { await this.helia.stop(); this.helia = null; this.fs = null; this.jsonStore = null; } } /** * Create a content hash for verification * Matches the Rust program's hash_to_bn254_field_size_be function */ static createContentHash(content) { // Equivalent to `hash_to_bn254_field_size_be` in Rust: // https://github.com/Lightprotocol/light-protocol/blob/main/program-libs/hasher/src/hash_to_field_size.rs#L91 // 1. Hash the UTF-8 bytes with Keccak256 and a bump seed (0xff). const keccakHash = keccak('keccak256') .update(Buffer.concat([Buffer.from(content, 'utf8'), Buffer.from([0xff])])) .digest(); // 2. Zero the first byte so the result fits within the BN254 field. const fieldSizedHash = Buffer.from(keccakHash); fieldSizedHash[0] = 0; return fieldSizedHash.toString('hex'); } /** * Create a metadata hash for participant data * Matches the Rust program's metadata hashing */ static createMetadataHash(metadata) { const metadataString = JSON.stringify({ displayName: metadata.displayName || '', avatar: metadata.avatar || '', permissions: metadata.permissions || [], lastUpdated: metadata.lastUpdated }); return this.createContentHash(metadataString); } /** * Batch store multiple content items */ async batchStore(items) { const results = []; for (const item of items) { if (typeof item.content === 'string' || Buffer.isBuffer(item.content)) { results.push(await this.storeFile(Buffer.isBuffer(item.content) ? item.content : Buffer.from(item.content), item.filename)); } else { results.push(await this.storeJSON(item.content)); } } return results; } /** * Get gateway URL for content */ getGatewayUrl(hash, gateway = 'https://ipfs.io/ipfs/') { return `${gateway}${hash}`; } /** * Validate IPFS hash format */ static isValidIPFSHash(hash) { try { CID.parse(hash); return true; } catch { return false; } } /** * Get content from IPFS (wrapper for retrieveJSON) * @param hash IPFS hash to retrieve * @returns Content data */ async getContent(hash) { try { return await this.retrieveJSON(hash); } catch (error) { // If JSON retrieval fails, try to get as raw file try { const buffer = await this.retrieveFile(hash); return buffer.toString('utf8'); } catch (fileError) { throw new Error(`Failed to get content from IPFS: ${error}`); } } } /** * Create a hash for content (wrapper for createContentHash) * @param content Content to hash * @returns Hash string */ createHash(content) { return IPFSService.createContentHash(content); } /** * Get IPFS service information * @returns Service information */ async getInfo() { try { const nodeInfo = await this.getNodeInfo(); return { version: nodeInfo?.agentVersion || 'helia', status: this.config.disabled ? 'disabled' : 'active', nodes: 1, storage: { used: 0, // Would need to implement actual storage calculation available: -1 // Unlimited for now } }; } catch (error) { return { version: 'unknown', status: this.config.disabled ? 'disabled' : 'error', nodes: 0, storage: { used: 0, available: 0 } }; } } } exports.IPFSService = IPFSService; //# sourceMappingURL=ipfs.js.map