@plotly/d3
Version:
433 lines (384 loc) • 12 kB
JavaScript
import "../arrays/map";
import "../core/functor";
import "../core/identity";
import "../core/true";
import "../geom/point";
import "../math/abs";
import "../math/trigonometry";
import "svg";
function d3_svg_line(projection) {
var x = d3_geom_pointX,
y = d3_geom_pointY,
defined = d3_true,
interpolate = d3_svg_lineLinear,
interpolateKey = interpolate.key,
tension = 0.7;
function line(data) {
var segments = [],
points = [],
i = -1,
n = data.length,
d,
fx = d3_functor(x),
fy = d3_functor(y);
function segment() {
segments.push("M", interpolate(projection(points), tension));
}
while (++i < n) {
if (defined.call(this, d = data[i], i)) {
points.push([+fx.call(this, d, i), +fy.call(this, d, i)]);
} else if (points.length) {
segment();
points = [];
}
}
if (points.length) segment();
return segments.length ? segments.join("") : null;
}
line.x = function(_) {
if (!arguments.length) return x;
x = _;
return line;
};
line.y = function(_) {
if (!arguments.length) return y;
y = _;
return line;
};
line.defined = function(_) {
if (!arguments.length) return defined;
defined = _;
return line;
};
line.interpolate = function(_) {
if (!arguments.length) return interpolateKey;
if (typeof _ === "function") interpolateKey = interpolate = _;
else interpolateKey = (interpolate = d3_svg_lineInterpolators.get(_) || d3_svg_lineLinear).key;
return line;
};
line.tension = function(_) {
if (!arguments.length) return tension;
tension = _;
return line;
};
return line;
}
d3.svg.line = function() {
return d3_svg_line(d3_identity);
};
// The various interpolators supported by the `line` class.
var d3_svg_lineInterpolators = d3.map({
"linear": d3_svg_lineLinear,
"linear-closed": d3_svg_lineLinearClosed,
"step": d3_svg_lineStep,
"step-before": d3_svg_lineStepBefore,
"step-after": d3_svg_lineStepAfter,
"basis": d3_svg_lineBasis,
"basis-open": d3_svg_lineBasisOpen,
"basis-closed": d3_svg_lineBasisClosed,
"bundle": d3_svg_lineBundle,
"cardinal": d3_svg_lineCardinal,
"cardinal-open": d3_svg_lineCardinalOpen,
"cardinal-closed": d3_svg_lineCardinalClosed,
"monotone": d3_svg_lineMonotone
});
d3_svg_lineInterpolators.forEach(function(key, value) {
value.key = key;
value.closed = /-closed$/.test(key);
});
// Linear interpolation; generates "L" commands.
function d3_svg_lineLinear(points) {
return points.length > 1 ? points.join("L") : points + "Z";
}
function d3_svg_lineLinearClosed(points) {
return points.join("L") + "Z";
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStep(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("H", (p[0] + (p = points[i])[0]) / 2, "V", p[1]);
if (n > 1) path.push("H", p[0]);
return path.join("");
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepBefore(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("V", (p = points[i])[1], "H", p[0]);
return path.join("");
}
// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepAfter(points) {
var i = 0,
n = points.length,
p = points[0],
path = [p[0], ",", p[1]];
while (++i < n) path.push("H", (p = points[i])[0], "V", p[1]);
return path.join("");
}
// Open cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalOpen(points, tension) {
return points.length < 4
? d3_svg_lineLinear(points)
: points[1] + d3_svg_lineHermite(points.slice(1, -1),
d3_svg_lineCardinalTangents(points, tension));
}
// Closed cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalClosed(points, tension) {
return points.length < 3
? d3_svg_lineLinearClosed(points)
: points[0] + d3_svg_lineHermite((points.push(points[0]), points),
d3_svg_lineCardinalTangents([points[points.length - 2]]
.concat(points, [points[1]]), tension));
}
// Cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinal(points, tension) {
return points.length < 3
? d3_svg_lineLinear(points)
: points[0] + d3_svg_lineHermite(points,
d3_svg_lineCardinalTangents(points, tension));
}
// Hermite spline construction; generates "C" commands.
function d3_svg_lineHermite(points, tangents) {
if (tangents.length < 1
|| (points.length != tangents.length
&& points.length != tangents.length + 2)) {
return d3_svg_lineLinear(points);
}
var quad = points.length != tangents.length,
path = "",
p0 = points[0],
p = points[1],
t0 = tangents[0],
t = t0,
pi = 1;
if (quad) {
path += "Q" + (p[0] - t0[0] * 2 / 3) + "," + (p[1] - t0[1] * 2 / 3)
+ "," + p[0] + "," + p[1];
p0 = points[1];
pi = 2;
}
if (tangents.length > 1) {
t = tangents[1];
p = points[pi];
pi++;
path += "C" + (p0[0] + t0[0]) + "," + (p0[1] + t0[1])
+ "," + (p[0] - t[0]) + "," + (p[1] - t[1])
+ "," + p[0] + "," + p[1];
for (var i = 2; i < tangents.length; i++, pi++) {
p = points[pi];
t = tangents[i];
path += "S" + (p[0] - t[0]) + "," + (p[1] - t[1])
+ "," + p[0] + "," + p[1];
}
}
if (quad) {
var lp = points[pi];
path += "Q" + (p[0] + t[0] * 2 / 3) + "," + (p[1] + t[1] * 2 / 3)
+ "," + lp[0] + "," + lp[1];
}
return path;
}
// Generates tangents for a cardinal spline.
function d3_svg_lineCardinalTangents(points, tension) {
var tangents = [],
a = (1 - tension) / 2,
p0,
p1 = points[0],
p2 = points[1],
i = 1,
n = points.length;
while (++i < n) {
p0 = p1;
p1 = p2;
p2 = points[i];
tangents.push([a * (p2[0] - p0[0]), a * (p2[1] - p0[1])]);
}
return tangents;
}
// B-spline interpolation; generates "C" commands.
function d3_svg_lineBasis(points) {
if (points.length < 3) return d3_svg_lineLinear(points);
var i = 1,
n = points.length,
pi = points[0],
x0 = pi[0],
y0 = pi[1],
px = [x0, x0, x0, (pi = points[1])[0]],
py = [y0, y0, y0, pi[1]],
path = [x0, ",", y0, "L", d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)];
points.push(points[n - 1]);
while (++i <= n) {
pi = points[i];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
points.pop();
path.push("L", pi);
return path.join("");
}
// Open B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisOpen(points) {
if (points.length < 4) return d3_svg_lineLinear(points);
var path = [],
i = -1,
n = points.length,
pi,
px = [0],
py = [0];
while (++i < 3) {
pi = points[i];
px.push(pi[0]);
py.push(pi[1]);
}
path.push(d3_svg_lineDot4(d3_svg_lineBasisBezier3, px)
+ "," + d3_svg_lineDot4(d3_svg_lineBasisBezier3, py));
--i; while (++i < n) {
pi = points[i];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
return path.join("");
}
// Closed B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisClosed(points) {
var path,
i = -1,
n = points.length,
m = n + 4,
pi,
px = [],
py = [];
while (++i < 4) {
pi = points[i % n];
px.push(pi[0]);
py.push(pi[1]);
}
path = [
d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",",
d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)
];
--i; while (++i < m) {
pi = points[i % n];
px.shift(); px.push(pi[0]);
py.shift(); py.push(pi[1]);
d3_svg_lineBasisBezier(path, px, py);
}
return path.join("");
}
function d3_svg_lineBundle(points, tension) {
var n = points.length - 1;
if (n) {
var x0 = points[0][0],
y0 = points[0][1],
dx = points[n][0] - x0,
dy = points[n][1] - y0,
i = -1,
p,
t;
while (++i <= n) {
p = points[i];
t = i / n;
p[0] = tension * p[0] + (1 - tension) * (x0 + t * dx);
p[1] = tension * p[1] + (1 - tension) * (y0 + t * dy);
}
}
return d3_svg_lineBasis(points);
}
// Returns the dot product of the given four-element vectors.
function d3_svg_lineDot4(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
// Matrix to transform basis (b-spline) control points to bezier
// control points. Derived from FvD 11.2.8.
var d3_svg_lineBasisBezier1 = [0, 2/3, 1/3, 0],
d3_svg_lineBasisBezier2 = [0, 1/3, 2/3, 0],
d3_svg_lineBasisBezier3 = [0, 1/6, 2/3, 1/6];
// Pushes a "C" Bézier curve onto the specified path array, given the
// two specified four-element arrays which define the control points.
function d3_svg_lineBasisBezier(path, x, y) {
path.push(
"C", d3_svg_lineDot4(d3_svg_lineBasisBezier1, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier1, y),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, y),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, x),
",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, y));
}
// Computes the slope from points p0 to p1.
function d3_svg_lineSlope(p0, p1) {
return (p1[1] - p0[1]) / (p1[0] - p0[0]);
}
// Compute three-point differences for the given points.
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline#Finite_difference
function d3_svg_lineFiniteDifferences(points) {
var i = 0,
j = points.length - 1,
m = [],
p0 = points[0],
p1 = points[1],
d = m[0] = d3_svg_lineSlope(p0, p1);
while (++i < j) {
m[i] = (d + (d = d3_svg_lineSlope(p0 = p1, p1 = points[i + 1]))) / 2;
}
m[i] = d;
return m;
}
// Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite
// interpolation. Returns an array of tangent vectors. For details, see
// http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
function d3_svg_lineMonotoneTangents(points) {
var tangents = [],
d,
a,
b,
s,
m = d3_svg_lineFiniteDifferences(points),
i = -1,
j = points.length - 1;
// The first two steps are done by computing finite-differences:
// 1. Compute the slopes of the secant lines between successive points.
// 2. Initialize the tangents at every point as the average of the secants.
// Then, for each segment…
while (++i < j) {
d = d3_svg_lineSlope(points[i], points[i + 1]);
// 3. If two successive yk = y{k + 1} are equal (i.e., d is zero), then set
// mk = m{k + 1} = 0 as the spline connecting these points must be flat to
// preserve monotonicity. Ignore step 4 and 5 for those k.
if (abs(d) < ε) {
m[i] = m[i + 1] = 0;
} else {
// 4. Let ak = mk / dk and bk = m{k + 1} / dk.
a = m[i] / d;
b = m[i + 1] / d;
// 5. Prevent overshoot and ensure monotonicity by restricting the
// magnitude of vector <ak, bk> to a circle of radius 3.
s = a * a + b * b;
if (s > 9) {
s = d * 3 / Math.sqrt(s);
m[i] = s * a;
m[i + 1] = s * b;
}
}
}
// Compute the normalized tangent vector from the slopes. Note that if x is
// not monotonic, it's possible that the slope will be infinite, so we protect
// against NaN by setting the coordinate to zero.
i = -1; while (++i <= j) {
s = (points[Math.min(j, i + 1)][0] - points[Math.max(0, i - 1)][0]) / (6 * (1 + m[i] * m[i]));
tangents.push([s || 0, m[i] * s || 0]);
}
return tangents;
}
function d3_svg_lineMonotone(points) {
return points.length < 3
? d3_svg_lineLinear(points)
: points[0] + d3_svg_lineHermite(points, d3_svg_lineMonotoneTangents(points));
}