@physics91/openrouter-mcp
Version:
A Model Context Protocol (MCP) server for OpenRouter API with Collective Intelligence - Multi-model consensus, ensemble reasoning, and collaborative problem solving
337 lines (271 loc) • 7.71 kB
Markdown
# Multimodal/Vision Guide
This guide explains how to use the multimodal (vision) capabilities of the OpenRouter MCP Server to analyze images with AI models.
## Overview
The OpenRouter MCP Server supports vision-capable AI models that can analyze and understand images. This includes:
- **GPT-4 Vision models** (OpenAI)
- **Claude 3 models** with vision (Anthropic)
- **Gemini Pro Vision** (Google)
- **Llama Vision models** (Meta)
## Getting Started
### Prerequisites
Make sure you have the Pillow dependency installed for image processing:
```bash
pip install Pillow>=10.0.0
```
This is already included in `requirements.txt` if you installed the server normally.
### Available Vision Models
Use the `list_vision_models` MCP tool to get current vision-capable models:
```json
{
"name": "list_vision_models"
}
```
Popular vision models include:
- `openai/gpt-4o` - OpenAI's latest multimodal model
- `openai/gpt-4o-mini` - Fast and cost-effective vision model
- `anthropic/claude-3-opus` - Most capable Claude vision model
- `anthropic/claude-3-sonnet` - Balanced Claude vision model
- `google/gemini-pro-vision` - Google's multimodal AI
- `meta-llama/llama-3.2-90b-vision-instruct` - Meta's vision-capable model
## Using Vision Capabilities
### Basic Image Analysis
Use the `chat_with_vision` MCP tool to analyze images:
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "openai/gpt-4o",
"messages": [
{"role": "user", "content": "What do you see in this image?"}
],
"images": [
{"data": "/path/to/image.jpg", "type": "path"}
]
}
}
```
### Supported Image Sources
The server supports multiple image input formats:
#### 1. File Paths
```json
{
"images": [
{"data": "/home/user/photo.jpg", "type": "path"},
{"data": "./relative/path/image.png", "type": "path"}
]
}
```
#### 2. URLs
```json
{
"images": [
{"data": "https://example.com/image.jpg", "type": "url"}
]
}
```
#### 3. Base64 Data
```json
{
"images": [
{"data": "...", "type": "base64"},
{"data": "/9j/4AAQSkZJRgABA...", "type": "base64"}
]
}
```
### Multiple Images
Analyze multiple images in a single request:
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "openai/gpt-4o",
"messages": [
{"role": "user", "content": "Compare these two images and describe the differences"}
],
"images": [
{"data": "/path/to/image1.jpg", "type": "path"},
{"data": "https://example.com/image2.png", "type": "url"}
]
}
}
```
### Advanced Parameters
Control the response with additional parameters:
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "anthropic/claude-3-opus",
"messages": [
{"role": "user", "content": "Analyze this medical chart for trends"}
],
"images": [
{"data": "/path/to/chart.png", "type": "path"}
],
"temperature": 0.3,
"max_tokens": 1000
}
}
```
## Image Processing Features
### Automatic Resizing
Images are automatically resized if they exceed API limits (typically 20MB):
- Large images are resized while maintaining aspect ratio
- Quality is optimized for API transmission
- The server will log when resizing occurs
### Format Support
Supported image formats:
- **JPEG** (.jpg, .jpeg)
- **PNG** (.png)
- **GIF** (.gif)
- **WebP** (.webp)
### Error Handling
The server provides detailed error messages for:
- Invalid image formats
- Corrupted image data
- Network errors when fetching URLs
- File not found errors
## Use Cases
### Document Analysis
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "openai/gpt-4o",
"messages": [
{"role": "user", "content": "Extract all text from this document and format it as markdown"}
],
"images": [
{"data": "/path/to/document.png", "type": "path"}
]
}
}
```
### Chart and Graph Analysis
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "claude-3-opus",
"messages": [
{"role": "user", "content": "Analyze this sales chart and summarize the key trends"}
],
"images": [
{"data": "https://company.com/sales-chart.png", "type": "url"}
]
}
}
```
### Code Screenshot Analysis
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "openai/gpt-4o",
"messages": [
{"role": "user", "content": "Review this code screenshot for bugs and suggest improvements"}
],
"images": [
{"data": "/path/to/code-screenshot.png", "type": "path"}
]
}
}
```
### Creative Content Analysis
```json
{
"name": "chat_with_vision",
"arguments": {
"model": "anthropic/claude-3-sonnet",
"messages": [
{"role": "user", "content": "Describe the artistic style and composition of this painting"}
],
"images": [
{"data": "https://museum.com/painting.jpg", "type": "url"}
]
}
}
```
## Best Practices
### Model Selection
- **GPT-4o**: Best for general image analysis and document processing
- **GPT-4o-mini**: Fast and cost-effective for simple image tasks
- **Claude 3 Opus**: Excellent for detailed analysis and creative interpretation
- **Claude 3 Sonnet**: Good balance of capability and speed
- **Gemini Pro Vision**: Strong for multimodal reasoning tasks
### Image Quality
- Use high-resolution images for better text recognition
- Ensure good contrast for document analysis
- Crop images to focus on relevant content
- Consider file size limits (20MB max after processing)
### Prompt Engineering
- Be specific about what you want to extract or analyze
- Use structured prompts for consistent outputs
- Provide context about the image type or domain
- Ask for specific formats (JSON, markdown, etc.) when needed
### Error Handling
- Always check for error responses
- Handle network timeouts for URL-based images
- Validate image formats before sending
- Have fallback strategies for failed requests
## Troubleshooting
### Common Issues
**1. Image not found**
```
Error: Could not load image from path: /path/to/image.jpg
```
- Check that the file path is correct
- Ensure the file exists and is readable
- Use absolute paths when possible
**2. Invalid image format**
```
Error: Unsupported image format: .bmp
```
- Convert to supported format (JPEG, PNG, GIF, WebP)
- Check that the file isn't corrupted
**3. Image too large**
```
Warning: Image resized for API optimization
```
- This is normal for large images
- The server automatically handles resizing
**4. Network errors with URLs**
```
Error: Failed to fetch image from URL
```
- Check that the URL is accessible
- Verify the image URL is direct (not behind authentication)
- Try downloading and using file path instead
**5. Model not supporting vision**
```
Error: Model does not support vision capabilities
```
- Use `list_vision_models` to get supported models
- Switch to a vision-capable model
### Debug Mode
Enable debug logging to troubleshoot issues:
```bash
npx openrouter-mcp start --debug
```
This will show detailed logs of image processing steps.
## Examples
See the `examples/multimodal_example.py` file for complete working examples of:
- Basic image analysis
- Multiple image comparison
- URL-based image processing
- Base64 image handling
Run the examples:
```bash
cd examples
python multimodal_example.py
```
## API Reference
For detailed API documentation, see the [API Documentation](API.md#vision-endpoints).
## Limitations
- Maximum image size: 20MB (after automatic resizing)
- Rate limits apply per OpenRouter plan
- Vision capabilities vary by model
- Some models may have token limits affecting image analysis depth
---
**Last Updated**: 2025-01-12
**Version**: 1.0.0