@physics91/openrouter-mcp
Version:
A Model Context Protocol (MCP) server for OpenRouter API with Collective Intelligence - Multi-model consensus, ensemble reasoning, and collaborative problem solving
628 lines (480 loc) โข 19 kB
Markdown
# OpenRouter MCP Server
๐ A powerful Model Context Protocol (MCP) server that provides seamless access to multiple AI models through OpenRouter's unified API.
[](https://www.npmjs.com/package/openrouter-mcp)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
## โจ Features
- ๐ค **Multi-Model Access**: Chat with GPT-4o, Claude 3.5, Llama 3.3, Gemini 2.5, and 200+ other AI models
- ๐ผ๏ธ **Vision/Multimodal Support**: Analyze images and visual content with vision-capable models
- Support for base64-encoded images and image URLs
- Automatic image resizing and optimization for API limits
- Compatible with GPT-4o, Claude 3.5, Gemini 2.5, Llama Vision, and more
- ๐ **Latest Models (Jan 2025)**: Always up-to-date with the newest models
- OpenAI o1, GPT-4o, GPT-4 Turbo
- Claude 3.5 Sonnet, Claude 3 Opus
- Gemini 2.5 Pro/Flash (1M+ context)
- DeepSeek V3, Grok 2, and more
- โก **Intelligent Caching**: Smart model list caching for improved performance
- Dual-layer memory + file caching with configurable TTL
- Automatic model metadata enhancement and categorization
- Advanced filtering by provider, category, capabilities, and performance tiers
- Statistics tracking and cache optimization
- ๐ท๏ธ **Rich Metadata**: Comprehensive model information with intelligent extraction
- Automatic provider detection (OpenAI, Anthropic, Google, Meta, DeepSeek, XAI, etc.)
- Smart categorization (chat, image, audio, embedding, reasoning, code, multimodal)
- Advanced capability detection (vision, functions, tools, JSON mode, streaming)
- Performance tiers (premium/standard/economy) and cost analysis
- Version parsing with family identification and latest model detection
- Quality scoring system (0-10) based on context length, pricing, and capabilities
- ๐ **Streaming Support**: Real-time response streaming for better user experience
- ๐ **Advanced Model Benchmarking**: Comprehensive performance analysis system
- Side-by-side model comparison with detailed metrics (response time, cost, quality, throughput)
- Category-based model selection (chat, code, reasoning, multimodal)
- Weighted performance analysis for different use cases
- Multiple report formats (Markdown, CSV, JSON)
- Historical benchmark tracking and trend analysis
- 5 MCP tools for seamless integration with Claude Desktop
- ๐ฐ **Usage Tracking**: Monitor API usage, costs, and token consumption
- ๐ก๏ธ **Error Handling**: Robust error handling with detailed logging
- ๐ง **Easy Setup**: One-command installation with `npx`
- ๐ฅ๏ธ **Claude Desktop Integration**: Seamless integration with Claude Desktop app
- ๐ **Full MCP Compliance**: Implements Model Context Protocol standards
## ๐ Quick Start
### Option 1: Using npx (Recommended)
```bash
# Initialize configuration
npx openrouter-mcp init
# Start the server
npx openrouter-mcp start
```
### Option 2: Global Installation
```bash
# Install globally
npm install -g openrouter-mcp
# Initialize and start
openrouter-mcp init
openrouter-mcp start
```
## ๐ Prerequisites
- **Node.js 16+**: Required for CLI interface
- **Python 3.9+**: Required for the MCP server backend
- **OpenRouter API Key**: Get one free at [openrouter.ai](https://openrouter.ai)
## ๐ ๏ธ Installation & Configuration
### 1. Get Your OpenRouter API Key
1. Visit [OpenRouter](https://openrouter.ai)
2. Sign up for a free account
3. Navigate to the API Keys section
4. Create a new API key
### 2. Initialize the Server
```bash
npx openrouter-mcp init
```
This will:
- Prompt you for your OpenRouter API key
- Create a `.env` configuration file
- Optionally set up Claude Desktop integration
### 3. Start the Server
```bash
npx openrouter-mcp start
```
The server will start on `localhost:8000` by default.
## ๐ฏ Usage
### Available Commands
```bash
# Show help
npx openrouter-mcp --help
# Initialize configuration
npx openrouter-mcp init
# Start the server
npx openrouter-mcp start [options]
# Check server status
npx openrouter-mcp status
# Configure Claude Desktop integration
npx openrouter-mcp install-claude
# Configure Claude Code CLI integration
npx openrouter-mcp install-claude-code
```
### Start Server Options
```bash
# Custom port and host
npx openrouter-mcp start --port 9000 --host 0.0.0.0
# Enable verbose logging
npx openrouter-mcp start --verbose
# Enable debug mode
npx openrouter-mcp start --debug
```
## ๐ค Claude Desktop Integration
### Automatic Setup
```bash
npx openrouter-mcp install-claude
```
This automatically configures Claude Desktop to use OpenRouter models.
### Manual Setup
Add to your Claude Desktop config file:
**macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json`
**Windows**: `%APPDATA%/Claude/claude_desktop_config.json`
**Linux**: `~/.config/claude/claude_desktop_config.json`
```json
{
"mcpServers": {
"openrouter": {
"command": "npx",
"args": ["openrouter-mcp", "start"],
"env": {
"OPENROUTER_API_KEY": "your-openrouter-api-key"
}
}
}
}
```
Then restart Claude Desktop.
## ๐ป Claude Code CLI Integration
### Automatic Setup
```bash
npx openrouter-mcp install-claude-code
```
This automatically configures Claude Code CLI to use OpenRouter models.
### Manual Setup
Add to your Claude Code CLI config file at `~/.claude/claude_code_config.json`:
```json
{
"mcpServers": {
"openrouter": {
"command": "npx",
"args": ["openrouter-mcp", "start"],
"env": {
"OPENROUTER_API_KEY": "your-openrouter-api-key"
}
}
}
}
```
### Usage with Claude Code CLI
Once configured, you can use OpenRouter models directly in your terminal:
```bash
# Chat with different AI models
claude-code "Use GPT-4 to explain this complex algorithm"
claude-code "Have Claude Opus review my Python code"
claude-code "Ask Llama 2 to suggest optimizations"
# Model discovery and comparison
claude-code "List all available AI models and their pricing"
claude-code "Compare GPT-4 and Claude Sonnet for code generation"
# Usage tracking
claude-code "Show my OpenRouter API usage for today"
claude-code "Which AI models am I using most frequently?"
```
For detailed setup instructions, see [Claude Code CLI Integration Guide](docs/CLAUDE_CODE_GUIDE.md).
## ๐ ๏ธ Available MCP Tools
Once integrated with Claude Desktop or Claude Code CLI, you'll have access to these tools:
### 1. `chat_with_model`
Chat with any available AI model.
**Parameters:**
- `model`: Model ID (e.g., "openai/gpt-4o", "anthropic/claude-3.5-sonnet")
- `messages`: Conversation history
- `temperature`: Creativity level (0.0-2.0)
- `max_tokens`: Maximum response length
- `stream`: Enable streaming responses
**Example:**
```json
{
"model": "openai/gpt-4o",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain quantum computing"}
],
"temperature": 0.7
}
```
### 2. `list_available_models`
Get comprehensive information about all available models with enhanced metadata.
**Parameters:**
- `filter_by`: Optional filter by model name
- `provider`: Filter by provider (openai, anthropic, google, etc.)
- `category`: Filter by category (chat, image, reasoning, etc.)
- `capabilities`: Filter by specific capabilities
- `performance_tier`: Filter by tier (premium, standard, economy)
- `min_quality_score`: Minimum quality score (0-10)
**Returns:**
- Model IDs, names, descriptions with enhanced metadata
- Provider and category classification
- Detailed pricing and context information
- Capability flags (vision, functions, streaming, etc.)
- Performance metrics and quality scores
- Version information and latest model indicators
### 3. `get_usage_stats`
Track your API usage and costs.
**Parameters:**
- `start_date`: Start date (YYYY-MM-DD)
- `end_date`: End date (YYYY-MM-DD)
**Returns:**
- Total costs and token usage
- Request counts
- Model-specific breakdowns
### 4. `chat_with_vision` ๐ผ๏ธ
Chat with vision-capable models by sending images.
**Parameters:**
- `model`: Vision-capable model ID (e.g., "openai/gpt-4o", "anthropic/claude-3-opus", "google/gemini-pro-vision")
- `messages`: Conversation history (supports both text and image content)
- `images`: List of images (file paths, URLs, or base64 strings)
- `temperature`: Creativity level (0.0-2.0)
- `max_tokens`: Maximum response length
**Image Format Support:**
- **File paths**: `/path/to/image.jpg`, `./image.png`
- **URLs**: `https://example.com/image.jpg`
- **Base64**: Direct base64 strings (with or without data URI prefix)
**Example - Multiple Images:**
```json
{
"model": "openai/gpt-4o",
"messages": [
{"role": "user", "content": "Compare these images and describe the differences"}
],
"images": [
{"data": "/home/user/image1.jpg", "type": "path"},
{"data": "https://example.com/image2.png", "type": "url"},
{"data": "...", "type": "base64"}
]
}
```
**Features:**
- Automatic image format detection and conversion
- Image resizing for API size limits (20MB max)
- Support for JPEG, PNG, GIF, and WebP formats
- Batch processing of multiple images
### 5. `list_vision_models` ๐ผ๏ธ
Get all vision-capable models.
**Parameters:** None
**Returns:**
- List of models that support image analysis
- Model capabilities and pricing information
- Context window sizes for multimodal content
**Example Vision Models:**
- `openai/gpt-4o`: OpenAI's latest multimodal model
- `openai/gpt-4o-mini`: Fast and cost-effective vision model
- `anthropic/claude-3-opus`: Most capable Claude vision model
- `anthropic/claude-3-sonnet`: Balanced Claude vision model
- `google/gemini-pro-vision`: Google's multimodal AI
- `meta-llama/llama-3.2-90b-vision-instruct`: Meta's vision-capable Llama model
### 6. `benchmark_models` ๐
Compare multiple AI models with the same prompt.
**Parameters:**
- `models`: List of model IDs to benchmark
- `prompt`: The prompt to send to each model
- `temperature`: Temperature setting (0.0-2.0)
- `max_tokens`: Maximum response tokens
- `runs_per_model`: Number of runs per model for averaging
**Returns:**
- Performance metrics (response time, cost, tokens)
- Model rankings by speed, cost, and reliability
- Individual responses from each model
### 7. `compare_model_categories` ๐
Compare the best models from different categories.
**Parameters:**
- `categories`: List of categories to compare
- `prompt`: Test prompt
- `models_per_category`: Number of top models per category
**Returns:**
- Category-wise comparison results
- Best performers in each category
### 8. `get_benchmark_history` ๐
Retrieve historical benchmark results.
**Parameters:**
- `limit`: Maximum number of results to return
- `days_back`: Number of days to look back
- `model_filter`: Optional model ID filter
**Returns:**
- List of past benchmark results
- Performance trends over time
- Summary statistics
### 9. `export_benchmark_report` ๐
Export benchmark results in different formats.
**Parameters:**
- `benchmark_file`: Benchmark result file to export
- `format`: Output format ("markdown", "csv", "json")
- `output_file`: Optional custom output filename
**Returns:**
- Exported report file path
- Export status and summary
### 10. `compare_model_performance` โ๏ธ
Advanced model comparison with weighted metrics.
**Parameters:**
- `models`: List of model IDs to compare
- `weights`: Metric weights (speed, cost, quality, throughput)
- `include_cost_analysis`: Include detailed cost analysis
**Returns:**
- Weighted performance rankings
- Cost-effectiveness analysis
- Usage recommendations for different scenarios
## ๐ง Configuration
### Environment Variables
Create a `.env` file in your project directory:
```env
# OpenRouter API Configuration
OPENROUTER_API_KEY=your-api-key-here
OPENROUTER_APP_NAME=openrouter-mcp
OPENROUTER_HTTP_REFERER=https://localhost
# Server Configuration
HOST=localhost
PORT=8000
LOG_LEVEL=info
# Cache Configuration
CACHE_TTL_HOURS=1
CACHE_MAX_ITEMS=1000
CACHE_FILE=openrouter_model_cache.json
```
### Configuration Options
| Variable | Description | Default |
|----------|-------------|---------|
| `OPENROUTER_API_KEY` | Your OpenRouter API key | Required |
| `OPENROUTER_APP_NAME` | App identifier for tracking | "openrouter-mcp" |
| `OPENROUTER_HTTP_REFERER` | HTTP referer header | "https://localhost" |
| `HOST` | Server bind address | "localhost" |
| `PORT` | Server port | "8000" |
| `LOG_LEVEL` | Logging level | "info" |
| `CACHE_TTL_HOURS` | Model cache TTL in hours | "1" |
| `CACHE_MAX_ITEMS` | Max items in memory cache | "1000" |
| `CACHE_FILE` | Cache file path | "openrouter_model_cache.json" |
## ๐ Popular Models
Here are some popular models available through OpenRouter:
### OpenAI Models
- `openai/gpt-4o`: Most capable multimodal GPT-4 model (text + vision)
- `openai/gpt-4o-mini`: Fast and cost-effective with vision support
- `openai/gpt-4`: Most capable text-only GPT-4 model
- `openai/gpt-3.5-turbo`: Fast and cost-effective text model
### Anthropic Models
- `anthropic/claude-3-opus`: Most capable Claude model (text + vision)
- `anthropic/claude-3-sonnet`: Balanced capability and speed (text + vision)
- `anthropic/claude-3-haiku`: Fast and efficient (text + vision)
### Open Source Models
- `meta-llama/llama-3.2-90b-vision-instruct`: Meta's flagship vision model
- `meta-llama/llama-3.2-11b-vision-instruct`: Smaller vision-capable Llama
- `meta-llama/llama-2-70b-chat`: Meta's text-only flagship model
- `mistralai/mixtral-8x7b-instruct`: Efficient mixture of experts
- `microsoft/wizardlm-2-8x22b`: High-quality instruction following
### Specialized Models
- `google/gemini-pro-vision`: Google's multimodal AI (text + vision)
- `google/gemini-pro`: Google's text-only model
- `cohere/command-r-plus`: Great for RAG applications
- `perplexity/llama-3-sonar-large-32k-online`: Web-connected model
Use `list_available_models` to see all available models and their pricing.
## ๐ Troubleshooting
### Common Issues
**1. Python not found**
```bash
# Check Python installation
python --version
# If not installed, download from python.org
# Make sure Python is in your PATH
```
**2. Missing Python dependencies**
```bash
# Install manually if needed
pip install -r requirements.txt
# For multimodal/vision features
pip install Pillow>=10.0.0
```
**3. API key not configured**
```bash
# Re-run initialization
npx openrouter-mcp init
```
**4. Port already in use**
```bash
# Use a different port
npx openrouter-mcp start --port 9000
```
**5. Claude Desktop not detecting server**
- Restart Claude Desktop after configuration
- Check config file path and format
- Verify API key is correct
### Debug Mode
Enable debug logging for detailed troubleshooting:
```bash
npx openrouter-mcp start --debug
```
### Status Check
Check server configuration and status:
```bash
npx openrouter-mcp status
```
## ๐งช Development
### Running Tests
```bash
# Install development dependencies
pip install -r requirements-dev.txt
# Run tests
npm run test
# Run tests with coverage
npm run test:coverage
# Lint code
npm run lint
# Format code
npm run format
```
### Project Structure
```
openrouter-mcp/
โโโ bin/ # CLI scripts
โ โโโ openrouter-mcp.js # Main CLI entry point
โ โโโ check-python.js # Python environment checker
โโโ src/openrouter_mcp/ # Python MCP server
โ โโโ client/ # OpenRouter API client
โ โ โโโ openrouter.py # Main API client with vision support
โ โโโ handlers/ # MCP tool handlers
โ โ โโโ chat.py # Text-only chat handlers
โ โ โโโ multimodal.py # Vision/multimodal handlers
โ โ โโโ benchmark.py # Model benchmarking handlers
โ โโโ server.py # Main server entry point
โโโ tests/ # Test suite
โ โโโ test_chat.py # Chat functionality tests
โ โโโ test_multimodal.py # Multimodal functionality tests
โ โโโ test_benchmark.py # Benchmarking functionality tests
โโโ examples/ # Usage examples
โ โโโ multimodal_example.py # Multimodal usage examples
โโโ docs/ # Documentation
โโโ requirements.txt # Python dependencies (includes Pillow)
โโโ package.json # Node.js package config
```
## ๐ Documentation
### Quick Links
- **[Documentation Index](docs/INDEX.md)** - Complete documentation overview
- **[Installation Guide](docs/INSTALLATION.md)** - Detailed setup instructions
- **[API Reference](docs/API.md)** - Complete API documentation
- **[Troubleshooting](docs/TROUBLESHOOTING.md)** - Common issues and solutions
- **[FAQ](docs/FAQ.md)** - Frequently asked questions
### Integration Guides
- [Claude Desktop Integration](docs/CLAUDE_DESKTOP_GUIDE.md) - Desktop app setup
- [Claude Code CLI Integration](docs/CLAUDE_CODE_GUIDE.md) - Terminal workflow
### Feature Guides
- [Multimodal/Vision Guide](docs/MULTIMODAL_GUIDE.md) - Image analysis capabilities
- [Benchmarking Guide](docs/BENCHMARK_GUIDE.md) - Model performance comparison
- [Model Metadata Guide](docs/METADATA_GUIDE.md) - Enhanced filtering system
- [Model Caching](docs/MODEL_CACHING.md) - Cache optimization
### Development
- [Architecture Overview](docs/ARCHITECTURE.md) - System design documentation
- [Testing Guide](docs/TESTING.md) - TDD practices and test suite
- [Contributing Guide](CONTRIBUTING.md) - Development guidelines
### External Resources
- [OpenRouter API Docs](https://openrouter.ai/docs) - Official OpenRouter documentation
- [MCP Specification](https://modelcontextprotocol.io) - Model Context Protocol standard
## ๐ค Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Submit a pull request
## ๐ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## ๐ Links
- [OpenRouter](https://openrouter.ai) - Get your API key
- [Claude Desktop](https://claude.ai/desktop) - Download Claude Desktop app
- [Model Context Protocol](https://modelcontextprotocol.io) - Learn about MCP
- [FastMCP](https://github.com/jlowin/fastmcp) - The MCP framework we use
## ๐ Acknowledgments
- [OpenRouter](https://openrouter.ai) for providing access to multiple AI models
- [FastMCP](https://github.com/jlowin/fastmcp) for the excellent MCP framework
- [Anthropic](https://anthropic.com) for the Model Context Protocol specification
---
**Made with โค๏ธ for the AI community**
Need help? Open an issue or check our documentation!