UNPKG

@physics91/openrouter-mcp

Version:

A Model Context Protocol (MCP) server for OpenRouter API with Collective Intelligence - Multi-model consensus, ensemble reasoning, and collaborative problem solving

628 lines (480 loc) โ€ข 19 kB
# OpenRouter MCP Server ๐Ÿš€ A powerful Model Context Protocol (MCP) server that provides seamless access to multiple AI models through OpenRouter's unified API. [![NPM Version](https://img.shields.io/npm/v/openrouter-mcp.svg)](https://www.npmjs.com/package/openrouter-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Python 3.9+](https://img.shields.io/badge/Python-3.9+-blue.svg)](https://www.python.org/downloads/) ## โœจ Features - ๐Ÿค– **Multi-Model Access**: Chat with GPT-4o, Claude 3.5, Llama 3.3, Gemini 2.5, and 200+ other AI models - ๐Ÿ–ผ๏ธ **Vision/Multimodal Support**: Analyze images and visual content with vision-capable models - Support for base64-encoded images and image URLs - Automatic image resizing and optimization for API limits - Compatible with GPT-4o, Claude 3.5, Gemini 2.5, Llama Vision, and more - ๐Ÿš€ **Latest Models (Jan 2025)**: Always up-to-date with the newest models - OpenAI o1, GPT-4o, GPT-4 Turbo - Claude 3.5 Sonnet, Claude 3 Opus - Gemini 2.5 Pro/Flash (1M+ context) - DeepSeek V3, Grok 2, and more - โšก **Intelligent Caching**: Smart model list caching for improved performance - Dual-layer memory + file caching with configurable TTL - Automatic model metadata enhancement and categorization - Advanced filtering by provider, category, capabilities, and performance tiers - Statistics tracking and cache optimization - ๐Ÿท๏ธ **Rich Metadata**: Comprehensive model information with intelligent extraction - Automatic provider detection (OpenAI, Anthropic, Google, Meta, DeepSeek, XAI, etc.) - Smart categorization (chat, image, audio, embedding, reasoning, code, multimodal) - Advanced capability detection (vision, functions, tools, JSON mode, streaming) - Performance tiers (premium/standard/economy) and cost analysis - Version parsing with family identification and latest model detection - Quality scoring system (0-10) based on context length, pricing, and capabilities - ๐Ÿ”„ **Streaming Support**: Real-time response streaming for better user experience - ๐Ÿ“Š **Advanced Model Benchmarking**: Comprehensive performance analysis system - Side-by-side model comparison with detailed metrics (response time, cost, quality, throughput) - Category-based model selection (chat, code, reasoning, multimodal) - Weighted performance analysis for different use cases - Multiple report formats (Markdown, CSV, JSON) - Historical benchmark tracking and trend analysis - 5 MCP tools for seamless integration with Claude Desktop - ๐Ÿ’ฐ **Usage Tracking**: Monitor API usage, costs, and token consumption - ๐Ÿ›ก๏ธ **Error Handling**: Robust error handling with detailed logging - ๐Ÿ”ง **Easy Setup**: One-command installation with `npx` - ๐Ÿ–ฅ๏ธ **Claude Desktop Integration**: Seamless integration with Claude Desktop app - ๐Ÿ“š **Full MCP Compliance**: Implements Model Context Protocol standards ## ๐Ÿš€ Quick Start ### Option 1: Using npx (Recommended) ```bash # Initialize configuration npx openrouter-mcp init # Start the server npx openrouter-mcp start ``` ### Option 2: Global Installation ```bash # Install globally npm install -g openrouter-mcp # Initialize and start openrouter-mcp init openrouter-mcp start ``` ## ๐Ÿ“‹ Prerequisites - **Node.js 16+**: Required for CLI interface - **Python 3.9+**: Required for the MCP server backend - **OpenRouter API Key**: Get one free at [openrouter.ai](https://openrouter.ai) ## ๐Ÿ› ๏ธ Installation & Configuration ### 1. Get Your OpenRouter API Key 1. Visit [OpenRouter](https://openrouter.ai) 2. Sign up for a free account 3. Navigate to the API Keys section 4. Create a new API key ### 2. Initialize the Server ```bash npx openrouter-mcp init ``` This will: - Prompt you for your OpenRouter API key - Create a `.env` configuration file - Optionally set up Claude Desktop integration ### 3. Start the Server ```bash npx openrouter-mcp start ``` The server will start on `localhost:8000` by default. ## ๐ŸŽฏ Usage ### Available Commands ```bash # Show help npx openrouter-mcp --help # Initialize configuration npx openrouter-mcp init # Start the server npx openrouter-mcp start [options] # Check server status npx openrouter-mcp status # Configure Claude Desktop integration npx openrouter-mcp install-claude # Configure Claude Code CLI integration npx openrouter-mcp install-claude-code ``` ### Start Server Options ```bash # Custom port and host npx openrouter-mcp start --port 9000 --host 0.0.0.0 # Enable verbose logging npx openrouter-mcp start --verbose # Enable debug mode npx openrouter-mcp start --debug ``` ## ๐Ÿค– Claude Desktop Integration ### Automatic Setup ```bash npx openrouter-mcp install-claude ``` This automatically configures Claude Desktop to use OpenRouter models. ### Manual Setup Add to your Claude Desktop config file: **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` **Windows**: `%APPDATA%/Claude/claude_desktop_config.json` **Linux**: `~/.config/claude/claude_desktop_config.json` ```json { "mcpServers": { "openrouter": { "command": "npx", "args": ["openrouter-mcp", "start"], "env": { "OPENROUTER_API_KEY": "your-openrouter-api-key" } } } } ``` Then restart Claude Desktop. ## ๐Ÿ’ป Claude Code CLI Integration ### Automatic Setup ```bash npx openrouter-mcp install-claude-code ``` This automatically configures Claude Code CLI to use OpenRouter models. ### Manual Setup Add to your Claude Code CLI config file at `~/.claude/claude_code_config.json`: ```json { "mcpServers": { "openrouter": { "command": "npx", "args": ["openrouter-mcp", "start"], "env": { "OPENROUTER_API_KEY": "your-openrouter-api-key" } } } } ``` ### Usage with Claude Code CLI Once configured, you can use OpenRouter models directly in your terminal: ```bash # Chat with different AI models claude-code "Use GPT-4 to explain this complex algorithm" claude-code "Have Claude Opus review my Python code" claude-code "Ask Llama 2 to suggest optimizations" # Model discovery and comparison claude-code "List all available AI models and their pricing" claude-code "Compare GPT-4 and Claude Sonnet for code generation" # Usage tracking claude-code "Show my OpenRouter API usage for today" claude-code "Which AI models am I using most frequently?" ``` For detailed setup instructions, see [Claude Code CLI Integration Guide](docs/CLAUDE_CODE_GUIDE.md). ## ๐Ÿ› ๏ธ Available MCP Tools Once integrated with Claude Desktop or Claude Code CLI, you'll have access to these tools: ### 1. `chat_with_model` Chat with any available AI model. **Parameters:** - `model`: Model ID (e.g., "openai/gpt-4o", "anthropic/claude-3.5-sonnet") - `messages`: Conversation history - `temperature`: Creativity level (0.0-2.0) - `max_tokens`: Maximum response length - `stream`: Enable streaming responses **Example:** ```json { "model": "openai/gpt-4o", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Explain quantum computing"} ], "temperature": 0.7 } ``` ### 2. `list_available_models` Get comprehensive information about all available models with enhanced metadata. **Parameters:** - `filter_by`: Optional filter by model name - `provider`: Filter by provider (openai, anthropic, google, etc.) - `category`: Filter by category (chat, image, reasoning, etc.) - `capabilities`: Filter by specific capabilities - `performance_tier`: Filter by tier (premium, standard, economy) - `min_quality_score`: Minimum quality score (0-10) **Returns:** - Model IDs, names, descriptions with enhanced metadata - Provider and category classification - Detailed pricing and context information - Capability flags (vision, functions, streaming, etc.) - Performance metrics and quality scores - Version information and latest model indicators ### 3. `get_usage_stats` Track your API usage and costs. **Parameters:** - `start_date`: Start date (YYYY-MM-DD) - `end_date`: End date (YYYY-MM-DD) **Returns:** - Total costs and token usage - Request counts - Model-specific breakdowns ### 4. `chat_with_vision` ๐Ÿ–ผ๏ธ Chat with vision-capable models by sending images. **Parameters:** - `model`: Vision-capable model ID (e.g., "openai/gpt-4o", "anthropic/claude-3-opus", "google/gemini-pro-vision") - `messages`: Conversation history (supports both text and image content) - `images`: List of images (file paths, URLs, or base64 strings) - `temperature`: Creativity level (0.0-2.0) - `max_tokens`: Maximum response length **Image Format Support:** - **File paths**: `/path/to/image.jpg`, `./image.png` - **URLs**: `https://example.com/image.jpg` - **Base64**: Direct base64 strings (with or without data URI prefix) **Example - Multiple Images:** ```json { "model": "openai/gpt-4o", "messages": [ {"role": "user", "content": "Compare these images and describe the differences"} ], "images": [ {"data": "/home/user/image1.jpg", "type": "path"}, {"data": "https://example.com/image2.png", "type": "url"}, {"data": "...", "type": "base64"} ] } ``` **Features:** - Automatic image format detection and conversion - Image resizing for API size limits (20MB max) - Support for JPEG, PNG, GIF, and WebP formats - Batch processing of multiple images ### 5. `list_vision_models` ๐Ÿ–ผ๏ธ Get all vision-capable models. **Parameters:** None **Returns:** - List of models that support image analysis - Model capabilities and pricing information - Context window sizes for multimodal content **Example Vision Models:** - `openai/gpt-4o`: OpenAI's latest multimodal model - `openai/gpt-4o-mini`: Fast and cost-effective vision model - `anthropic/claude-3-opus`: Most capable Claude vision model - `anthropic/claude-3-sonnet`: Balanced Claude vision model - `google/gemini-pro-vision`: Google's multimodal AI - `meta-llama/llama-3.2-90b-vision-instruct`: Meta's vision-capable Llama model ### 6. `benchmark_models` ๐Ÿ“Š Compare multiple AI models with the same prompt. **Parameters:** - `models`: List of model IDs to benchmark - `prompt`: The prompt to send to each model - `temperature`: Temperature setting (0.0-2.0) - `max_tokens`: Maximum response tokens - `runs_per_model`: Number of runs per model for averaging **Returns:** - Performance metrics (response time, cost, tokens) - Model rankings by speed, cost, and reliability - Individual responses from each model ### 7. `compare_model_categories` ๐Ÿ† Compare the best models from different categories. **Parameters:** - `categories`: List of categories to compare - `prompt`: Test prompt - `models_per_category`: Number of top models per category **Returns:** - Category-wise comparison results - Best performers in each category ### 8. `get_benchmark_history` ๐Ÿ“š Retrieve historical benchmark results. **Parameters:** - `limit`: Maximum number of results to return - `days_back`: Number of days to look back - `model_filter`: Optional model ID filter **Returns:** - List of past benchmark results - Performance trends over time - Summary statistics ### 9. `export_benchmark_report` ๐Ÿ“„ Export benchmark results in different formats. **Parameters:** - `benchmark_file`: Benchmark result file to export - `format`: Output format ("markdown", "csv", "json") - `output_file`: Optional custom output filename **Returns:** - Exported report file path - Export status and summary ### 10. `compare_model_performance` โš–๏ธ Advanced model comparison with weighted metrics. **Parameters:** - `models`: List of model IDs to compare - `weights`: Metric weights (speed, cost, quality, throughput) - `include_cost_analysis`: Include detailed cost analysis **Returns:** - Weighted performance rankings - Cost-effectiveness analysis - Usage recommendations for different scenarios ## ๐Ÿ”ง Configuration ### Environment Variables Create a `.env` file in your project directory: ```env # OpenRouter API Configuration OPENROUTER_API_KEY=your-api-key-here OPENROUTER_APP_NAME=openrouter-mcp OPENROUTER_HTTP_REFERER=https://localhost # Server Configuration HOST=localhost PORT=8000 LOG_LEVEL=info # Cache Configuration CACHE_TTL_HOURS=1 CACHE_MAX_ITEMS=1000 CACHE_FILE=openrouter_model_cache.json ``` ### Configuration Options | Variable | Description | Default | |----------|-------------|---------| | `OPENROUTER_API_KEY` | Your OpenRouter API key | Required | | `OPENROUTER_APP_NAME` | App identifier for tracking | "openrouter-mcp" | | `OPENROUTER_HTTP_REFERER` | HTTP referer header | "https://localhost" | | `HOST` | Server bind address | "localhost" | | `PORT` | Server port | "8000" | | `LOG_LEVEL` | Logging level | "info" | | `CACHE_TTL_HOURS` | Model cache TTL in hours | "1" | | `CACHE_MAX_ITEMS` | Max items in memory cache | "1000" | | `CACHE_FILE` | Cache file path | "openrouter_model_cache.json" | ## ๐Ÿ“Š Popular Models Here are some popular models available through OpenRouter: ### OpenAI Models - `openai/gpt-4o`: Most capable multimodal GPT-4 model (text + vision) - `openai/gpt-4o-mini`: Fast and cost-effective with vision support - `openai/gpt-4`: Most capable text-only GPT-4 model - `openai/gpt-3.5-turbo`: Fast and cost-effective text model ### Anthropic Models - `anthropic/claude-3-opus`: Most capable Claude model (text + vision) - `anthropic/claude-3-sonnet`: Balanced capability and speed (text + vision) - `anthropic/claude-3-haiku`: Fast and efficient (text + vision) ### Open Source Models - `meta-llama/llama-3.2-90b-vision-instruct`: Meta's flagship vision model - `meta-llama/llama-3.2-11b-vision-instruct`: Smaller vision-capable Llama - `meta-llama/llama-2-70b-chat`: Meta's text-only flagship model - `mistralai/mixtral-8x7b-instruct`: Efficient mixture of experts - `microsoft/wizardlm-2-8x22b`: High-quality instruction following ### Specialized Models - `google/gemini-pro-vision`: Google's multimodal AI (text + vision) - `google/gemini-pro`: Google's text-only model - `cohere/command-r-plus`: Great for RAG applications - `perplexity/llama-3-sonar-large-32k-online`: Web-connected model Use `list_available_models` to see all available models and their pricing. ## ๐Ÿ› Troubleshooting ### Common Issues **1. Python not found** ```bash # Check Python installation python --version # If not installed, download from python.org # Make sure Python is in your PATH ``` **2. Missing Python dependencies** ```bash # Install manually if needed pip install -r requirements.txt # For multimodal/vision features pip install Pillow>=10.0.0 ``` **3. API key not configured** ```bash # Re-run initialization npx openrouter-mcp init ``` **4. Port already in use** ```bash # Use a different port npx openrouter-mcp start --port 9000 ``` **5. Claude Desktop not detecting server** - Restart Claude Desktop after configuration - Check config file path and format - Verify API key is correct ### Debug Mode Enable debug logging for detailed troubleshooting: ```bash npx openrouter-mcp start --debug ``` ### Status Check Check server configuration and status: ```bash npx openrouter-mcp status ``` ## ๐Ÿงช Development ### Running Tests ```bash # Install development dependencies pip install -r requirements-dev.txt # Run tests npm run test # Run tests with coverage npm run test:coverage # Lint code npm run lint # Format code npm run format ``` ### Project Structure ``` openrouter-mcp/ โ”œโ”€โ”€ bin/ # CLI scripts โ”‚ โ”œโ”€โ”€ openrouter-mcp.js # Main CLI entry point โ”‚ โ””โ”€โ”€ check-python.js # Python environment checker โ”œโ”€โ”€ src/openrouter_mcp/ # Python MCP server โ”‚ โ”œโ”€โ”€ client/ # OpenRouter API client โ”‚ โ”‚ โ””โ”€โ”€ openrouter.py # Main API client with vision support โ”‚ โ”œโ”€โ”€ handlers/ # MCP tool handlers โ”‚ โ”‚ โ”œโ”€โ”€ chat.py # Text-only chat handlers โ”‚ โ”‚ โ”œโ”€โ”€ multimodal.py # Vision/multimodal handlers โ”‚ โ”‚ โ””โ”€โ”€ benchmark.py # Model benchmarking handlers โ”‚ โ””โ”€โ”€ server.py # Main server entry point โ”œโ”€โ”€ tests/ # Test suite โ”‚ โ”œโ”€โ”€ test_chat.py # Chat functionality tests โ”‚ โ”œโ”€โ”€ test_multimodal.py # Multimodal functionality tests โ”‚ โ””โ”€โ”€ test_benchmark.py # Benchmarking functionality tests โ”œโ”€โ”€ examples/ # Usage examples โ”‚ โ””โ”€โ”€ multimodal_example.py # Multimodal usage examples โ”œโ”€โ”€ docs/ # Documentation โ”œโ”€โ”€ requirements.txt # Python dependencies (includes Pillow) โ””โ”€โ”€ package.json # Node.js package config ``` ## ๐Ÿ“š Documentation ### Quick Links - **[Documentation Index](docs/INDEX.md)** - Complete documentation overview - **[Installation Guide](docs/INSTALLATION.md)** - Detailed setup instructions - **[API Reference](docs/API.md)** - Complete API documentation - **[Troubleshooting](docs/TROUBLESHOOTING.md)** - Common issues and solutions - **[FAQ](docs/FAQ.md)** - Frequently asked questions ### Integration Guides - [Claude Desktop Integration](docs/CLAUDE_DESKTOP_GUIDE.md) - Desktop app setup - [Claude Code CLI Integration](docs/CLAUDE_CODE_GUIDE.md) - Terminal workflow ### Feature Guides - [Multimodal/Vision Guide](docs/MULTIMODAL_GUIDE.md) - Image analysis capabilities - [Benchmarking Guide](docs/BENCHMARK_GUIDE.md) - Model performance comparison - [Model Metadata Guide](docs/METADATA_GUIDE.md) - Enhanced filtering system - [Model Caching](docs/MODEL_CACHING.md) - Cache optimization ### Development - [Architecture Overview](docs/ARCHITECTURE.md) - System design documentation - [Testing Guide](docs/TESTING.md) - TDD practices and test suite - [Contributing Guide](CONTRIBUTING.md) - Development guidelines ### External Resources - [OpenRouter API Docs](https://openrouter.ai/docs) - Official OpenRouter documentation - [MCP Specification](https://modelcontextprotocol.io) - Model Context Protocol standard ## ๐Ÿค Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details. 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request ## ๐Ÿ“„ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## ๐Ÿ”— Links - [OpenRouter](https://openrouter.ai) - Get your API key - [Claude Desktop](https://claude.ai/desktop) - Download Claude Desktop app - [Model Context Protocol](https://modelcontextprotocol.io) - Learn about MCP - [FastMCP](https://github.com/jlowin/fastmcp) - The MCP framework we use ## ๐Ÿ™ Acknowledgments - [OpenRouter](https://openrouter.ai) for providing access to multiple AI models - [FastMCP](https://github.com/jlowin/fastmcp) for the excellent MCP framework - [Anthropic](https://anthropic.com) for the Model Context Protocol specification --- **Made with โค๏ธ for the AI community** Need help? Open an issue or check our documentation!