UNPKG

@paradiselabs/mco-protocol

Version:

MCO (Model Configuration Orchestration) MCP Server & Configuration Tool

451 lines (365 loc) 11.7 kB
# AutoGPT-like Agent Design with Modal and MCO ## Core Agent Architecture ### 1. Agent Components - **LLM Interface**: Claude API via Modal for reasoning and planning - **Memory System**: Persistent state tracking across steps - **Tool System**: Code interpreter, file operations, web access - **MCP Client**: Integration with MCO MCP server - **Execution Engine**: Runs tools and processes results ### 2. Agent Capabilities - **Code Generation**: Create and modify code files - **Code Execution**: Run code in sandbox environment - **File Management**: Create, read, update, delete files - **Web Access**: Search and retrieve information - **Self-Reflection**: Evaluate progress against goals - **Planning**: Break down tasks into steps ## Modal Implementation ### 1. Modal Setup ```python import modal # Define the Modal app app = modal.App("mco-autogpt-agent") # Base image with required dependencies image = modal.Image.debian_slim().pip_install( "anthropic", "requests", "python-dotenv", "beautifulsoup4", "numpy", "pandas", "matplotlib" ) # Mount local directory for file persistence volume = modal.Volume.from_name("mco-agent-volume") ``` ### 2. Agent Function ```python @app.function( image=image, volumes={"/data": volume}, timeout=600, keep_warm=1 ) def run_agent(task_description, mco_orchestration_id=None): # Initialize agent agent = AutoGPTAgent( task=task_description, orchestration_id=mco_orchestration_id ) # Run agent loop return agent.run() ``` ### 3. Tool Functions ```python @app.function(image=image, volumes={"/data": volume}) def execute_code(code, language="python"): # Set up sandbox environment # Execute code safely # Return results pass @app.function(image=image) def search_web(query): # Perform web search # Parse and return results pass @app.function(image=image, volumes={"/data": volume}) def file_operation(operation, path, content=None): # Handle file operations (read, write, list, etc.) pass ``` ## MCO Integration ### 1. MCP Client ```python class MCPClient: def __init__(self, orchestration_id=None): self.orchestration_id = orchestration_id def start_orchestration(self, config): # Call MCO start_orchestration tool # Return orchestration ID pass def get_next_directive(self): # Call MCO get_next_directive tool # Return directive pass def complete_step(self, step_id, result): # Call MCO complete_step tool # Return status pass def get_workflow_status(self): # Call MCO get_workflow_status tool # Return status pass ``` ### 2. Orchestration Integration ```python class AutoGPTAgent: def __init__(self, task, orchestration_id=None): self.task = task self.mcp_client = MCPClient(orchestration_id) self.memory = [] self.tools = { "execute_code": execute_code, "search_web": search_web, "file_operation": file_operation } def run(self): # If no orchestration ID, start new orchestration if not self.mcp_client.orchestration_id: config = {"task": self.task} self.mcp_client.start_orchestration(config) results = [] # Main agent loop while True: # Get next directive from MCO directive = self.mcp_client.get_next_directive() if directive["type"] == "complete": # Workflow is complete break # Process directive result = self._process_directive(directive) results.append(result) # Complete step self.mcp_client.complete_step(directive["step_id"], result) return results ``` ### 3. Directive Processing ```python def _process_directive(self, directive): # Extract information from directive instruction = directive["instruction"] context = directive["persistent_context"] injected = directive.get("injected_context", {}) # Add to memory self.memory.append({ "role": "system", "content": f"Directive: {instruction}\nContext: {json.dumps(context)}" }) if injected: self.memory.append({ "role": "system", "content": f"Additional context: {json.dumps(injected)}" }) # Generate thinking process thinking = self._generate_thinking(instruction, context, injected) # Execute tools based on thinking result = self._execute_plan(thinking) return { "thinking": thinking, "result": result } ``` ## Agent Thinking Process ### 1. Thinking Generation ```python def _generate_thinking(self, instruction, context, injected): # Prepare prompt for Claude prompt = f""" <task>{instruction}</task> <context> {json.dumps(context, indent=2)} </context> {"<injected>" + json.dumps(injected, indent=2) + "</injected>" if injected else ""} <memory> {self._format_memory()} </memory> <available_tools> {self._format_tools()} </available_tools> <thinking> """ # Call Claude API response = anthropic.completions.create( model="claude-3-5-sonnet", prompt=prompt, max_tokens=2000, stop=["</thinking>"] ) return response.completion ``` ### 2. Plan Execution ```python def _execute_plan(self, thinking): # Extract tool calls from thinking tool_calls = self._extract_tool_calls(thinking) results = [] for tool_call in tool_calls: tool_name = tool_call["name"] tool_args = tool_call["args"] if tool_name in self.tools: # Execute tool result = self.tools[tool_name](**tool_args) results.append({ "tool": tool_name, "args": tool_args, "result": result }) # Add to memory self.memory.append({ "role": "function", "name": tool_name, "content": json.dumps(result) }) # Generate summary of results summary = self._generate_summary(results) return { "tool_results": results, "summary": summary } ``` ## Code Review Agent Specialization ### 1. Code Review Tools ```python @app.function(image=image) def analyze_code(code, language): # Analyze code for issues # Return analysis results pass @app.function(image=image) def suggest_improvements(code, analysis): # Generate improvement suggestions # Return improved code pass @app.function(image=image) def run_tests(code, test_cases): # Run tests on code # Return test results pass ``` ### 2. Code Review Workflow ```python def review_code(self, code_files): results = {} for file_path, code in code_files.items(): # Determine language language = self._detect_language(file_path) # Analyze code analysis = analyze_code(code, language) # Generate suggestions suggestions = suggest_improvements(code, analysis) # Create test cases test_cases = self._generate_test_cases(code, language) # Run tests test_results = run_tests(code, test_cases) # Compile results results[file_path] = { "analysis": analysis, "suggestions": suggestions, "test_results": test_results } return results ``` ## MCO Workflow Creation ### 1. SNLP File Generation ```python def generate_snlp_files(self, review_type, language_focus): # Generate mco.core core_content = self._generate_core_file(review_type, language_focus) # Generate mco.sc sc_content = self._generate_sc_file(review_type, language_focus) # Generate mco.features features_content = self._generate_features_file(review_type, language_focus) # Generate mco.styles styles_content = self._generate_styles_file(review_type, language_focus) return { "mco.core": core_content, "mco.sc": sc_content, "mco.features": features_content, "mco.styles": styles_content } ``` ### 2. File Content Generation ```python def _generate_core_file(self, review_type, language_focus): return f"""// MCO Core Configuration @workflow "Code Review Assistant" >This is an AI assistant that performs thorough code reviews for {language_focus} code with a focus on {review_type}. >The workflow follows a structured progression to ensure comprehensive and reliable code reviews. @description "Multi-step code review workflow with progressive revelation" >This workflow demonstrates MCO's progressive revelation capability - core requirements stay persistent while features and styles are strategically injected at optimal moments. >The agent should maintain focus on the current step while building upon previous work. @version "1.0.0" // Data Section - Persistent state throughout workflow @data: language: "{language_focus}" review_type: "{review_type}" code_files: [] issues_found: {} suggestions: {} test_results: {} >Focus on building reliable, autonomous code review workflows that complete successfully without human intervention. >The agent should maintain context across all steps and build upon previous work iteratively. >Use the data variables to track state and progress throughout the workflow. // Agents Section - Workflow execution structure @agents: orchestrator: name: "MCO Orchestrator" description: "Manages workflow state and progressive revelation" model: "claude-3-5-sonnet" steps: - "Understand the code review requirements and scope" - "Analyze code structure and organization" - "Identify bugs, errors, and potential issues" - "Evaluate code quality and adherence to best practices" - "Generate improvement suggestions with examples" - "Create comprehensive review report with actionable recommendations" """ ``` ## Deployment and Integration ### 1. Web Endpoint ```python @app.endpoint(method="POST") def agent_endpoint(task_description, mco_config=None): # Start agent with task results = run_agent(task_description, mco_config) return results ``` ### 2. Gradio Integration ```python def create_gradio_interface(): # Create Gradio interface # Connect to Modal endpoint # Return interface pass ``` ### 3. Deployment Script ```python def deploy(): # Deploy Modal app app.deploy() # Create and launch Gradio interface interface = create_gradio_interface() interface.launch() ``` ## Testing and Validation ### 1. Unit Tests ```python def test_agent_components(): # Test individual agent components pass def test_mco_integration(): # Test MCO integration pass def test_tool_execution(): # Test tool execution pass ``` ### 2. Integration Tests ```python def test_end_to_end(): # Test full agent workflow pass def test_code_review(): # Test code review functionality pass def test_snlp_generation(): # Test SNLP file generation pass ``` ### 3. Performance Monitoring ```python def monitor_performance(results): # Track execution time # Monitor resource usage # Log errors and issues pass ```