@paradiselabs/mco-protocol
Version:
MCO (Model Configuration Orchestration) MCP Server & Configuration Tool
451 lines (365 loc) • 11.7 kB
Markdown
# AutoGPT-like Agent Design with Modal and MCO
## Core Agent Architecture
### 1. Agent Components
- **LLM Interface**: Claude API via Modal for reasoning and planning
- **Memory System**: Persistent state tracking across steps
- **Tool System**: Code interpreter, file operations, web access
- **MCP Client**: Integration with MCO MCP server
- **Execution Engine**: Runs tools and processes results
### 2. Agent Capabilities
- **Code Generation**: Create and modify code files
- **Code Execution**: Run code in sandbox environment
- **File Management**: Create, read, update, delete files
- **Web Access**: Search and retrieve information
- **Self-Reflection**: Evaluate progress against goals
- **Planning**: Break down tasks into steps
## Modal Implementation
### 1. Modal Setup
```python
import modal
# Define the Modal app
app = modal.App("mco-autogpt-agent")
# Base image with required dependencies
image = modal.Image.debian_slim().pip_install(
"anthropic",
"requests",
"python-dotenv",
"beautifulsoup4",
"numpy",
"pandas",
"matplotlib"
)
# Mount local directory for file persistence
volume = modal.Volume.from_name("mco-agent-volume")
```
### 2. Agent Function
```python
def run_agent(task_description, mco_orchestration_id=None):
# Initialize agent
agent = AutoGPTAgent(
task=task_description,
orchestration_id=mco_orchestration_id
)
# Run agent loop
return agent.run()
```
### 3. Tool Functions
```python
def execute_code(code, language="python"):
# Set up sandbox environment
# Execute code safely
# Return results
pass
def search_web(query):
# Perform web search
# Parse and return results
pass
def file_operation(operation, path, content=None):
# Handle file operations (read, write, list, etc.)
pass
```
## MCO Integration
### 1. MCP Client
```python
class MCPClient:
def __init__(self, orchestration_id=None):
self.orchestration_id = orchestration_id
def start_orchestration(self, config):
# Call MCO start_orchestration tool
# Return orchestration ID
pass
def get_next_directive(self):
# Call MCO get_next_directive tool
# Return directive
pass
def complete_step(self, step_id, result):
# Call MCO complete_step tool
# Return status
pass
def get_workflow_status(self):
# Call MCO get_workflow_status tool
# Return status
pass
```
### 2. Orchestration Integration
```python
class AutoGPTAgent:
def __init__(self, task, orchestration_id=None):
self.task = task
self.mcp_client = MCPClient(orchestration_id)
self.memory = []
self.tools = {
"execute_code": execute_code,
"search_web": search_web,
"file_operation": file_operation
}
def run(self):
# If no orchestration ID, start new orchestration
if not self.mcp_client.orchestration_id:
config = {"task": self.task}
self.mcp_client.start_orchestration(config)
results = []
# Main agent loop
while True:
# Get next directive from MCO
directive = self.mcp_client.get_next_directive()
if directive["type"] == "complete":
# Workflow is complete
break
# Process directive
result = self._process_directive(directive)
results.append(result)
# Complete step
self.mcp_client.complete_step(directive["step_id"], result)
return results
```
### 3. Directive Processing
```python
def _process_directive(self, directive):
# Extract information from directive
instruction = directive["instruction"]
context = directive["persistent_context"]
injected = directive.get("injected_context", {})
# Add to memory
self.memory.append({
"role": "system",
"content": f"Directive: {instruction}\nContext: {json.dumps(context)}"
})
if injected:
self.memory.append({
"role": "system",
"content": f"Additional context: {json.dumps(injected)}"
})
# Generate thinking process
thinking = self._generate_thinking(instruction, context, injected)
# Execute tools based on thinking
result = self._execute_plan(thinking)
return {
"thinking": thinking,
"result": result
}
```
## Agent Thinking Process
### 1. Thinking Generation
```python
def _generate_thinking(self, instruction, context, injected):
# Prepare prompt for Claude
prompt = f"""
<task>{instruction}</task>
<context>
{json.dumps(context, indent=2)}
</context>
{"<injected>" + json.dumps(injected, indent=2) + "</injected>" if injected else ""}
<memory>
{self._format_memory()}
</memory>
<available_tools>
{self._format_tools()}
</available_tools>
<thinking>
"""
# Call Claude API
response = anthropic.completions.create(
model="claude-3-5-sonnet",
prompt=prompt,
max_tokens=2000,
stop=["</thinking>"]
)
return response.completion
```
### 2. Plan Execution
```python
def _execute_plan(self, thinking):
# Extract tool calls from thinking
tool_calls = self._extract_tool_calls(thinking)
results = []
for tool_call in tool_calls:
tool_name = tool_call["name"]
tool_args = tool_call["args"]
if tool_name in self.tools:
# Execute tool
result = self.tools[tool_name](**tool_args)
results.append({
"tool": tool_name,
"args": tool_args,
"result": result
})
# Add to memory
self.memory.append({
"role": "function",
"name": tool_name,
"content": json.dumps(result)
})
# Generate summary of results
summary = self._generate_summary(results)
return {
"tool_results": results,
"summary": summary
}
```
## Code Review Agent Specialization
### 1. Code Review Tools
```python
def analyze_code(code, language):
# Analyze code for issues
# Return analysis results
pass
def suggest_improvements(code, analysis):
# Generate improvement suggestions
# Return improved code
pass
def run_tests(code, test_cases):
# Run tests on code
# Return test results
pass
```
### 2. Code Review Workflow
```python
def review_code(self, code_files):
results = {}
for file_path, code in code_files.items():
# Determine language
language = self._detect_language(file_path)
# Analyze code
analysis = analyze_code(code, language)
# Generate suggestions
suggestions = suggest_improvements(code, analysis)
# Create test cases
test_cases = self._generate_test_cases(code, language)
# Run tests
test_results = run_tests(code, test_cases)
# Compile results
results[file_path] = {
"analysis": analysis,
"suggestions": suggestions,
"test_results": test_results
}
return results
```
## MCO Workflow Creation
### 1. SNLP File Generation
```python
def generate_snlp_files(self, review_type, language_focus):
# Generate mco.core
core_content = self._generate_core_file(review_type, language_focus)
# Generate mco.sc
sc_content = self._generate_sc_file(review_type, language_focus)
# Generate mco.features
features_content = self._generate_features_file(review_type, language_focus)
# Generate mco.styles
styles_content = self._generate_styles_file(review_type, language_focus)
return {
"mco.core": core_content,
"mco.sc": sc_content,
"mco.features": features_content,
"mco.styles": styles_content
}
```
### 2. File Content Generation
```python
def _generate_core_file(self, review_type, language_focus):
return f"""// MCO Core Configuration
@workflow "Code Review Assistant"
>This is an AI assistant that performs thorough code reviews for {language_focus} code with a focus on {review_type}.
>The workflow follows a structured progression to ensure comprehensive and reliable code reviews.
@description "Multi-step code review workflow with progressive revelation"
>This workflow demonstrates MCO's progressive revelation capability - core requirements stay persistent while features and styles are strategically injected at optimal moments.
>The agent should maintain focus on the current step while building upon previous work.
@version "1.0.0"
// Data Section - Persistent state throughout workflow
@data:
language: "{language_focus}"
review_type: "{review_type}"
code_files: []
issues_found: {}
suggestions: {}
test_results: {}
>Focus on building reliable, autonomous code review workflows that complete successfully without human intervention.
>The agent should maintain context across all steps and build upon previous work iteratively.
>Use the data variables to track state and progress throughout the workflow.
// Agents Section - Workflow execution structure
@agents:
orchestrator:
name: "MCO Orchestrator"
description: "Manages workflow state and progressive revelation"
model: "claude-3-5-sonnet"
steps:
- "Understand the code review requirements and scope"
- "Analyze code structure and organization"
- "Identify bugs, errors, and potential issues"
- "Evaluate code quality and adherence to best practices"
- "Generate improvement suggestions with examples"
- "Create comprehensive review report with actionable recommendations"
"""
```
## Deployment and Integration
### 1. Web Endpoint
```python
def agent_endpoint(task_description, mco_config=None):
# Start agent with task
results = run_agent(task_description, mco_config)
return results
```
### 2. Gradio Integration
```python
def create_gradio_interface():
# Create Gradio interface
# Connect to Modal endpoint
# Return interface
pass
```
### 3. Deployment Script
```python
def deploy():
# Deploy Modal app
app.deploy()
# Create and launch Gradio interface
interface = create_gradio_interface()
interface.launch()
```
## Testing and Validation
### 1. Unit Tests
```python
def test_agent_components():
# Test individual agent components
pass
def test_mco_integration():
# Test MCO integration
pass
def test_tool_execution():
# Test tool execution
pass
```
### 2. Integration Tests
```python
def test_end_to_end():
# Test full agent workflow
pass
def test_code_review():
# Test code review functionality
pass
def test_snlp_generation():
# Test SNLP file generation
pass
```
### 3. Performance Monitoring
```python
def monitor_performance(results):
# Track execution time
# Monitor resource usage
# Log errors and issues
pass
```