@noble/curves
Version:
Audited & minimal JS implementation of elliptic curve cryptography
1,329 lines (1,253 loc) • 59.9 kB
text/typescript
/**
* Short Weierstrass curve methods. The formula is: y² = x³ + ax + b.
*
* ### Design rationale for types
*
* * Interaction between classes from different curves should fail:
* `k256.Point.BASE.add(p256.Point.BASE)`
* * For this purpose we want to use `instanceof` operator, which is fast and works during runtime
* * Different calls of `curve()` would return different classes -
* `curve(params) !== curve(params)`: if somebody decided to monkey-patch their curve,
* it won't affect others
*
* TypeScript can't infer types for classes created inside a function. Classes is one instance
* of nominative types in TypeScript and interfaces only check for shape, so it's hard to create
* unique type for every function call.
*
* We can use generic types via some param, like curve opts, but that would:
* 1. Enable interaction between `curve(params)` and `curve(params)` (curves of same params)
* which is hard to debug.
* 2. Params can be generic and we can't enforce them to be constant value:
* if somebody creates curve from non-constant params,
* it would be allowed to interact with other curves with non-constant params
*
* @todo https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#unique-symbol
* @module
*/
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import { hmac as nobleHmac } from '@noble/hashes/hmac.js';
import { ahash } from '@noble/hashes/utils.js';
import {
abool,
abytes,
aInRange,
bitLen,
bitMask,
bytesToHex,
bytesToNumberBE,
concatBytes,
createHmacDrbg,
hexToBytes,
isBytes,
memoized,
numberToHexUnpadded,
validateObject,
randomBytes as wcRandomBytes,
type CHash,
type Signer,
} from '../utils.ts';
import {
createCurveFields,
createKeygen,
mulEndoUnsafe,
negateCt,
normalizeZ,
wNAF,
type AffinePoint,
type CurveLengths,
type CurvePoint,
type CurvePointCons,
} from './curve.ts';
import {
FpInvertBatch,
getMinHashLength,
mapHashToField,
validateField,
type IField,
} from './modular.ts';
export type { AffinePoint };
type EndoBasis = [[bigint, bigint], [bigint, bigint]];
/**
* When Weierstrass curve has `a=0`, it becomes Koblitz curve.
* Koblitz curves allow using **efficiently-computable GLV endomorphism ψ**.
* Endomorphism uses 2x less RAM, speeds up precomputation by 2x and ECDH / key recovery by 20%.
* For precomputed wNAF it trades off 1/2 init time & 1/3 ram for 20% perf hit.
*
* Endomorphism consists of beta, lambda and splitScalar:
*
* 1. GLV endomorphism ψ transforms a point: `P = (x, y) ↦ ψ(P) = (β·x mod p, y)`
* 2. GLV scalar decomposition transforms a scalar: `k ≡ k₁ + k₂·λ (mod n)`
* 3. Then these are combined: `k·P = k₁·P + k₂·ψ(P)`
* 4. Two 128-bit point-by-scalar multiplications + one point addition is faster than
* one 256-bit multiplication.
*
* where
* * beta: β ∈ Fₚ with β³ = 1, β ≠ 1
* * lambda: λ ∈ Fₙ with λ³ = 1, λ ≠ 1
* * splitScalar decomposes k ↦ k₁, k₂, by using reduced basis vectors.
* Gauss lattice reduction calculates them from initial basis vectors `(n, 0), (-λ, 0)`
*
* Check out `test/misc/endomorphism.js` and
* [gist](https://gist.github.com/paulmillr/eb670806793e84df628a7c434a873066).
*/
export type EndomorphismOpts = {
beta: bigint;
basises?: EndoBasis;
splitScalar?: (k: bigint) => { k1neg: boolean; k1: bigint; k2neg: boolean; k2: bigint };
};
// We construct basis in such way that den is always positive and equals n, but num sign depends on basis (not on secret value)
const divNearest = (num: bigint, den: bigint) => (num + (num >= 0 ? den : -den) / _2n) / den;
export type ScalarEndoParts = { k1neg: boolean; k1: bigint; k2neg: boolean; k2: bigint };
/**
* Splits scalar for GLV endomorphism.
*/
export function _splitEndoScalar(k: bigint, basis: EndoBasis, n: bigint): ScalarEndoParts {
// Split scalar into two such that part is ~half bits: `abs(part) < sqrt(N)`
// Since part can be negative, we need to do this on point.
// TODO: verifyScalar function which consumes lambda
const [[a1, b1], [a2, b2]] = basis;
const c1 = divNearest(b2 * k, n);
const c2 = divNearest(-b1 * k, n);
// |k1|/|k2| is < sqrt(N), but can be negative.
// If we do `k1 mod N`, we'll get big scalar (`> sqrt(N)`): so, we do cheaper negation instead.
let k1 = k - c1 * a1 - c2 * a2;
let k2 = -c1 * b1 - c2 * b2;
const k1neg = k1 < _0n;
const k2neg = k2 < _0n;
if (k1neg) k1 = -k1;
if (k2neg) k2 = -k2;
// Double check that resulting scalar less than half bits of N: otherwise wNAF will fail.
// This should only happen on wrong basises. Also, math inside is too complex and I don't trust it.
const MAX_NUM = bitMask(Math.ceil(bitLen(n) / 2)) + _1n; // Half bits of N
if (k1 < _0n || k1 >= MAX_NUM || k2 < _0n || k2 >= MAX_NUM) {
throw new Error('splitScalar (endomorphism): failed, k=' + k);
}
return { k1neg, k1, k2neg, k2 };
}
/**
* Option to enable hedged signatures with improved security.
*
* * Randomly generated k is bad, because broken CSPRNG would leak private keys.
* * Deterministic k (RFC6979) is better; but is suspectible to fault attacks.
*
* We allow using technique described in RFC6979 3.6: additional k', a.k.a. adding randomness
* to deterministic sig. If CSPRNG is broken & randomness is weak, it would STILL be as secure
* as ordinary sig without ExtraEntropy.
*
* * `true` means "fetch data, from CSPRNG, incorporate it into k generation"
* * `false` means "disable extra entropy, use purely deterministic k"
* * `Uint8Array` passed means "incorporate following data into k generation"
*
* https://paulmillr.com/posts/deterministic-signatures/
*/
export type ECDSAExtraEntropy = boolean | Uint8Array;
/**
* - `compact` is the default format
* - `recovered` is the same as compact, but with an extra byte indicating recovery byte
* - `der` is ASN.1 DER encoding
*/
export type ECDSASignatureFormat = 'compact' | 'recovered' | 'der';
/**
* - `prehash`: (default: true) indicates whether to do sha256(message).
* When a custom hash is used, it must be set to `false`.
*/
export type ECDSARecoverOpts = {
prehash?: boolean;
};
/**
* - `prehash`: (default: true) indicates whether to do sha256(message).
* When a custom hash is used, it must be set to `false`.
* - `lowS`: (default: true) prohibits signatures which have (sig.s >= CURVE.n/2n).
* Compatible with BTC/ETH. Setting `lowS: false` allows to create malleable signatures,
* which is default openssl behavior.
* Non-malleable signatures can still be successfully verified in openssl.
* - `format`: (default: 'compact') 'compact' or 'recovered' with recovery byte
*/
export type ECDSAVerifyOpts = {
prehash?: boolean;
lowS?: boolean;
format?: ECDSASignatureFormat;
};
/**
* - `prehash`: (default: true) indicates whether to do sha256(message).
* When a custom hash is used, it must be set to `false`.
* - `lowS`: (default: true) prohibits signatures which have (sig.s >= CURVE.n/2n).
* Compatible with BTC/ETH. Setting `lowS: false` allows to create malleable signatures,
* which is default openssl behavior.
* Non-malleable signatures can still be successfully verified in openssl.
* - `format`: (default: 'compact') 'compact' or 'recovered' with recovery byte
* - `extraEntropy`: (default: false) creates sigs with increased security, see {@link ECDSAExtraEntropy}
*/
export type ECDSASignOpts = {
prehash?: boolean;
lowS?: boolean;
format?: ECDSASignatureFormat;
extraEntropy?: ECDSAExtraEntropy;
};
function validateSigFormat(format: string): ECDSASignatureFormat {
if (!['compact', 'recovered', 'der'].includes(format))
throw new Error('Signature format must be "compact", "recovered", or "der"');
return format as ECDSASignatureFormat;
}
function validateSigOpts<T extends ECDSASignOpts, D extends Required<ECDSASignOpts>>(
opts: T,
def: D
): Required<ECDSASignOpts> {
const optsn: ECDSASignOpts = {};
for (let optName of Object.keys(def)) {
// @ts-ignore
optsn[optName] = opts[optName] === undefined ? def[optName] : opts[optName];
}
abool(optsn.lowS!, 'lowS');
abool(optsn.prehash!, 'prehash');
if (optsn.format !== undefined) validateSigFormat(optsn.format);
return optsn as Required<ECDSASignOpts>;
}
/** Instance methods for 3D XYZ projective points. */
export interface WeierstrassPoint<T> extends CurvePoint<T, WeierstrassPoint<T>> {
/** projective X coordinate. Different from affine x. */
readonly X: T;
/** projective Y coordinate. Different from affine y. */
readonly Y: T;
/** projective z coordinate */
readonly Z: T;
/** affine x coordinate. Different from projective X. */
get x(): T;
/** affine y coordinate. Different from projective Y. */
get y(): T;
/** Encodes point using IEEE P1363 (DER) encoding. First byte is 2/3/4. Default = isCompressed. */
toBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
}
/** Static methods for 3D XYZ projective points. */
export interface WeierstrassPointCons<T> extends CurvePointCons<WeierstrassPoint<T>> {
/** Does NOT validate if the point is valid. Use `.assertValidity()`. */
new (X: T, Y: T, Z: T): WeierstrassPoint<T>;
CURVE(): WeierstrassOpts<T>;
}
/**
* Weierstrass curve options.
*
* * p: prime characteristic (order) of finite field, in which arithmetics is done
* * n: order of prime subgroup a.k.a total amount of valid curve points
* * h: cofactor, usually 1. h*n is group order; n is subgroup order
* * a: formula param, must be in field of p
* * b: formula param, must be in field of p
* * Gx: x coordinate of generator point a.k.a. base point
* * Gy: y coordinate of generator point
*/
export type WeierstrassOpts<T> = Readonly<{
p: bigint;
n: bigint;
h: bigint;
a: T;
b: T;
Gx: T;
Gy: T;
}>;
// When a cofactor != 1, there can be an effective methods to:
// 1. Determine whether a point is torsion-free
// 2. Clear torsion component
export type WeierstrassExtraOpts<T> = Partial<{
Fp: IField<T>;
Fn: IField<bigint>;
allowInfinityPoint: boolean;
endo: EndomorphismOpts;
isTorsionFree: (c: WeierstrassPointCons<T>, point: WeierstrassPoint<T>) => boolean;
clearCofactor: (c: WeierstrassPointCons<T>, point: WeierstrassPoint<T>) => WeierstrassPoint<T>;
fromBytes: (bytes: Uint8Array) => AffinePoint<T>;
toBytes: (
c: WeierstrassPointCons<T>,
point: WeierstrassPoint<T>,
isCompressed: boolean
) => Uint8Array;
}>;
/**
* Options for ECDSA signatures over a Weierstrass curve.
*
* * lowS: (default: true) whether produced / verified signatures occupy low half of ecdsaOpts.p. Prevents malleability.
* * hmac: (default: noble-hashes hmac) function, would be used to init hmac-drbg for k generation.
* * randomBytes: (default: webcrypto os-level CSPRNG) custom method for fetching secure randomness.
* * bits2int, bits2int_modN: used in sigs, sometimes overridden by curves
*/
export type ECDSAOpts = Partial<{
lowS: boolean;
hmac: (key: Uint8Array, message: Uint8Array) => Uint8Array;
randomBytes: (bytesLength?: number) => Uint8Array;
bits2int: (bytes: Uint8Array) => bigint;
bits2int_modN: (bytes: Uint8Array) => bigint;
}>;
/**
* Elliptic Curve Diffie-Hellman interface.
* Provides keygen, secret-to-public conversion, calculating shared secrets.
*/
export interface ECDH {
keygen: (seed?: Uint8Array) => { secretKey: Uint8Array; publicKey: Uint8Array };
getPublicKey: (secretKey: Uint8Array, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (
secretKeyA: Uint8Array,
publicKeyB: Uint8Array,
isCompressed?: boolean
) => Uint8Array;
Point: WeierstrassPointCons<bigint>;
utils: {
isValidSecretKey: (secretKey: Uint8Array) => boolean;
isValidPublicKey: (publicKey: Uint8Array, isCompressed?: boolean) => boolean;
randomSecretKey: (seed?: Uint8Array) => Uint8Array;
};
lengths: CurveLengths;
}
/**
* ECDSA interface.
* Only supported for prime fields, not Fp2 (extension fields).
*/
export interface ECDSA extends ECDH {
sign: (message: Uint8Array, secretKey: Uint8Array, opts?: ECDSASignOpts) => Uint8Array;
verify: (
signature: Uint8Array,
message: Uint8Array,
publicKey: Uint8Array,
opts?: ECDSAVerifyOpts
) => boolean;
recoverPublicKey(signature: Uint8Array, message: Uint8Array, opts?: ECDSARecoverOpts): Uint8Array;
Signature: ECDSASignatureCons;
}
export class DERErr extends Error {
constructor(m = '') {
super(m);
}
}
export type IDER = {
// asn.1 DER encoding utils
Err: typeof DERErr;
// Basic building block is TLV (Tag-Length-Value)
_tlv: {
encode: (tag: number, data: string) => string;
// v - value, l - left bytes (unparsed)
decode(tag: number, data: Uint8Array): { v: Uint8Array; l: Uint8Array };
};
// https://crypto.stackexchange.com/a/57734 Leftmost bit of first byte is 'negative' flag,
// since we always use positive integers here. It must always be empty:
// - add zero byte if exists
// - if next byte doesn't have a flag, leading zero is not allowed (minimal encoding)
_int: {
encode(num: bigint): string;
decode(data: Uint8Array): bigint;
};
toSig(hex: string | Uint8Array): { r: bigint; s: bigint };
hexFromSig(sig: { r: bigint; s: bigint }): string;
};
/**
* ASN.1 DER encoding utilities. ASN is very complex & fragile. Format:
*
* [0x30 (SEQUENCE), bytelength, 0x02 (INTEGER), intLength, R, 0x02 (INTEGER), intLength, S]
*
* Docs: https://letsencrypt.org/docs/a-warm-welcome-to-asn1-and-der/, https://luca.ntop.org/Teaching/Appunti/asn1.html
*/
export const DER: IDER = {
// asn.1 DER encoding utils
Err: DERErr,
// Basic building block is TLV (Tag-Length-Value)
_tlv: {
encode: (tag: number, data: string): string => {
const { Err: E } = DER;
if (tag < 0 || tag > 256) throw new E('tlv.encode: wrong tag');
if (data.length & 1) throw new E('tlv.encode: unpadded data');
const dataLen = data.length / 2;
const len = numberToHexUnpadded(dataLen);
if ((len.length / 2) & 0b1000_0000) throw new E('tlv.encode: long form length too big');
// length of length with long form flag
const lenLen = dataLen > 127 ? numberToHexUnpadded((len.length / 2) | 0b1000_0000) : '';
const t = numberToHexUnpadded(tag);
return t + lenLen + len + data;
},
// v - value, l - left bytes (unparsed)
decode(tag: number, data: Uint8Array): { v: Uint8Array; l: Uint8Array } {
const { Err: E } = DER;
let pos = 0;
if (tag < 0 || tag > 256) throw new E('tlv.encode: wrong tag');
if (data.length < 2 || data[pos++] !== tag) throw new E('tlv.decode: wrong tlv');
const first = data[pos++];
const isLong = !!(first & 0b1000_0000); // First bit of first length byte is flag for short/long form
let length = 0;
if (!isLong) length = first;
else {
// Long form: [longFlag(1bit), lengthLength(7bit), length (BE)]
const lenLen = first & 0b0111_1111;
if (!lenLen) throw new E('tlv.decode(long): indefinite length not supported');
if (lenLen > 4) throw new E('tlv.decode(long): byte length is too big'); // this will overflow u32 in js
const lengthBytes = data.subarray(pos, pos + lenLen);
if (lengthBytes.length !== lenLen) throw new E('tlv.decode: length bytes not complete');
if (lengthBytes[0] === 0) throw new E('tlv.decode(long): zero leftmost byte');
for (const b of lengthBytes) length = (length << 8) | b;
pos += lenLen;
if (length < 128) throw new E('tlv.decode(long): not minimal encoding');
}
const v = data.subarray(pos, pos + length);
if (v.length !== length) throw new E('tlv.decode: wrong value length');
return { v, l: data.subarray(pos + length) };
},
},
// https://crypto.stackexchange.com/a/57734 Leftmost bit of first byte is 'negative' flag,
// since we always use positive integers here. It must always be empty:
// - add zero byte if exists
// - if next byte doesn't have a flag, leading zero is not allowed (minimal encoding)
_int: {
encode(num: bigint): string {
const { Err: E } = DER;
if (num < _0n) throw new E('integer: negative integers are not allowed');
let hex = numberToHexUnpadded(num);
// Pad with zero byte if negative flag is present
if (Number.parseInt(hex[0], 16) & 0b1000) hex = '00' + hex;
if (hex.length & 1) throw new E('unexpected DER parsing assertion: unpadded hex');
return hex;
},
decode(data: Uint8Array): bigint {
const { Err: E } = DER;
if (data[0] & 0b1000_0000) throw new E('invalid signature integer: negative');
if (data[0] === 0x00 && !(data[1] & 0b1000_0000))
throw new E('invalid signature integer: unnecessary leading zero');
return bytesToNumberBE(data);
},
},
toSig(bytes: Uint8Array): { r: bigint; s: bigint } {
// parse DER signature
const { Err: E, _int: int, _tlv: tlv } = DER;
const data = abytes(bytes, undefined, 'signature');
const { v: seqBytes, l: seqLeftBytes } = tlv.decode(0x30, data);
if (seqLeftBytes.length) throw new E('invalid signature: left bytes after parsing');
const { v: rBytes, l: rLeftBytes } = tlv.decode(0x02, seqBytes);
const { v: sBytes, l: sLeftBytes } = tlv.decode(0x02, rLeftBytes);
if (sLeftBytes.length) throw new E('invalid signature: left bytes after parsing');
return { r: int.decode(rBytes), s: int.decode(sBytes) };
},
hexFromSig(sig: { r: bigint; s: bigint }): string {
const { _tlv: tlv, _int: int } = DER;
const rs = tlv.encode(0x02, int.encode(sig.r));
const ss = tlv.encode(0x02, int.encode(sig.s));
const seq = rs + ss;
return tlv.encode(0x30, seq);
},
};
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4);
/**
* Creates weierstrass Point constructor, based on specified curve options.
*
* See {@link WeierstrassOpts}.
*
* @example
```js
const opts = {
p: 0xfffffffffffffffffffffffffffffffeffffac73n,
n: 0x100000000000000000001b8fa16dfab9aca16b6b3n,
h: 1n,
a: 0n,
b: 7n,
Gx: 0x3b4c382ce37aa192a4019e763036f4f5dd4d7ebbn,
Gy: 0x938cf935318fdced6bc28286531733c3f03c4feen,
};
const secp160k1_Point = weierstrass(opts);
```
*/
export function weierstrass<T>(
params: WeierstrassOpts<T>,
extraOpts: WeierstrassExtraOpts<T> = {}
): WeierstrassPointCons<T> {
const validated = createCurveFields('weierstrass', params, extraOpts);
const { Fp, Fn } = validated;
let CURVE = validated.CURVE as WeierstrassOpts<T>;
const { h: cofactor, n: CURVE_ORDER } = CURVE;
validateObject(
extraOpts,
{},
{
allowInfinityPoint: 'boolean',
clearCofactor: 'function',
isTorsionFree: 'function',
fromBytes: 'function',
toBytes: 'function',
endo: 'object',
}
);
const { endo } = extraOpts;
if (endo) {
// validateObject(endo, { beta: 'bigint', splitScalar: 'function' });
if (!Fp.is0(CURVE.a) || typeof endo.beta !== 'bigint' || !Array.isArray(endo.basises)) {
throw new Error('invalid endo: expected "beta": bigint and "basises": array');
}
}
const lengths = getWLengths(Fp, Fn);
function assertCompressionIsSupported() {
if (!Fp.isOdd) throw new Error('compression is not supported: Field does not have .isOdd()');
}
// Implements IEEE P1363 point encoding
function pointToBytes(
_c: WeierstrassPointCons<T>,
point: WeierstrassPoint<T>,
isCompressed: boolean
): Uint8Array {
const { x, y } = point.toAffine();
const bx = Fp.toBytes(x);
abool(isCompressed, 'isCompressed');
if (isCompressed) {
assertCompressionIsSupported();
const hasEvenY = !Fp.isOdd!(y);
return concatBytes(pprefix(hasEvenY), bx);
} else {
return concatBytes(Uint8Array.of(0x04), bx, Fp.toBytes(y));
}
}
function pointFromBytes(bytes: Uint8Array) {
abytes(bytes, undefined, 'Point');
const { publicKey: comp, publicKeyUncompressed: uncomp } = lengths; // e.g. for 32-byte: 33, 65
const length = bytes.length;
const head = bytes[0];
const tail = bytes.subarray(1);
// No actual validation is done here: use .assertValidity()
if (length === comp && (head === 0x02 || head === 0x03)) {
const x = Fp.fromBytes(tail);
if (!Fp.isValid(x)) throw new Error('bad point: is not on curve, wrong x');
const y2 = weierstrassEquation(x); // y² = x³ + ax + b
let y: T;
try {
y = Fp.sqrt(y2); // y = y² ^ (p+1)/4
} catch (sqrtError) {
const err = sqrtError instanceof Error ? ': ' + sqrtError.message : '';
throw new Error('bad point: is not on curve, sqrt error' + err);
}
assertCompressionIsSupported();
const evenY = Fp.isOdd!(y);
const evenH = (head & 1) === 1; // ECDSA-specific
if (evenH !== evenY) y = Fp.neg(y);
return { x, y };
} else if (length === uncomp && head === 0x04) {
// TODO: more checks
const L = Fp.BYTES;
const x = Fp.fromBytes(tail.subarray(0, L));
const y = Fp.fromBytes(tail.subarray(L, L * 2));
if (!isValidXY(x, y)) throw new Error('bad point: is not on curve');
return { x, y };
} else {
throw new Error(
`bad point: got length ${length}, expected compressed=${comp} or uncompressed=${uncomp}`
);
}
}
const encodePoint = extraOpts.toBytes || pointToBytes;
const decodePoint = extraOpts.fromBytes || pointFromBytes;
function weierstrassEquation(x: T): T {
const x2 = Fp.sqr(x); // x * x
const x3 = Fp.mul(x2, x); // x² * x
return Fp.add(Fp.add(x3, Fp.mul(x, CURVE.a)), CURVE.b); // x³ + a * x + b
}
// TODO: move top-level
/** Checks whether equation holds for given x, y: y² == x³ + ax + b */
function isValidXY(x: T, y: T): boolean {
const left = Fp.sqr(y); // y²
const right = weierstrassEquation(x); // x³ + ax + b
return Fp.eql(left, right);
}
// Validate whether the passed curve params are valid.
// Test 1: equation y² = x³ + ax + b should work for generator point.
if (!isValidXY(CURVE.Gx, CURVE.Gy)) throw new Error('bad curve params: generator point');
// Test 2: discriminant Δ part should be non-zero: 4a³ + 27b² != 0.
// Guarantees curve is genus-1, smooth (non-singular).
const _4a3 = Fp.mul(Fp.pow(CURVE.a, _3n), _4n);
const _27b2 = Fp.mul(Fp.sqr(CURVE.b), BigInt(27));
if (Fp.is0(Fp.add(_4a3, _27b2))) throw new Error('bad curve params: a or b');
/** Asserts coordinate is valid: 0 <= n < Fp.ORDER. */
function acoord(title: string, n: T, banZero = false) {
if (!Fp.isValid(n) || (banZero && Fp.is0(n))) throw new Error(`bad point coordinate ${title}`);
return n;
}
function aprjpoint(other: unknown) {
if (!(other instanceof Point)) throw new Error('Weierstrass Point expected');
}
function splitEndoScalarN(k: bigint) {
if (!endo || !endo.basises) throw new Error('no endo');
return _splitEndoScalar(k, endo.basises, Fn.ORDER);
}
// Memoized toAffine / validity check. They are heavy. Points are immutable.
// Converts Projective point to affine (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
// (X, Y, Z) ∋ (x=X/Z, y=Y/Z)
const toAffineMemo = memoized((p: Point, iz?: T): AffinePoint<T> => {
const { X, Y, Z } = p;
// Fast-path for normalized points
if (Fp.eql(Z, Fp.ONE)) return { x: X, y: Y };
const is0 = p.is0();
// If invZ was 0, we return zero point. However we still want to execute
// all operations, so we replace invZ with a random number, 1.
if (iz == null) iz = is0 ? Fp.ONE : Fp.inv(Z);
const x = Fp.mul(X, iz);
const y = Fp.mul(Y, iz);
const zz = Fp.mul(Z, iz);
if (is0) return { x: Fp.ZERO, y: Fp.ZERO };
if (!Fp.eql(zz, Fp.ONE)) throw new Error('invZ was invalid');
return { x, y };
});
// NOTE: on exception this will crash 'cached' and no value will be set.
// Otherwise true will be return
const assertValidMemo = memoized((p: Point) => {
if (p.is0()) {
// (0, 1, 0) aka ZERO is invalid in most contexts.
// In BLS, ZERO can be serialized, so we allow it.
// (0, 0, 0) is invalid representation of ZERO.
if (extraOpts.allowInfinityPoint && !Fp.is0(p.Y)) return;
throw new Error('bad point: ZERO');
}
// Some 3rd-party test vectors require different wording between here & `fromCompressedHex`
const { x, y } = p.toAffine();
if (!Fp.isValid(x) || !Fp.isValid(y)) throw new Error('bad point: x or y not field elements');
if (!isValidXY(x, y)) throw new Error('bad point: equation left != right');
if (!p.isTorsionFree()) throw new Error('bad point: not in prime-order subgroup');
return true;
});
function finishEndo(
endoBeta: EndomorphismOpts['beta'],
k1p: Point,
k2p: Point,
k1neg: boolean,
k2neg: boolean
) {
k2p = new Point(Fp.mul(k2p.X, endoBeta), k2p.Y, k2p.Z);
k1p = negateCt(k1neg, k1p);
k2p = negateCt(k2neg, k2p);
return k1p.add(k2p);
}
/**
* Projective Point works in 3d / projective (homogeneous) coordinates:(X, Y, Z) ∋ (x=X/Z, y=Y/Z).
* Default Point works in 2d / affine coordinates: (x, y).
* We're doing calculations in projective, because its operations don't require costly inversion.
*/
class Point implements WeierstrassPoint<T> {
// base / generator point
static readonly BASE = new Point(CURVE.Gx, CURVE.Gy, Fp.ONE);
// zero / infinity / identity point
static readonly ZERO = new Point(Fp.ZERO, Fp.ONE, Fp.ZERO); // 0, 1, 0
// math field
static readonly Fp = Fp;
// scalar field
static readonly Fn = Fn;
readonly X: T;
readonly Y: T;
readonly Z: T;
/** Does NOT validate if the point is valid. Use `.assertValidity()`. */
constructor(X: T, Y: T, Z: T) {
this.X = acoord('x', X);
this.Y = acoord('y', Y, true);
this.Z = acoord('z', Z);
Object.freeze(this);
}
static CURVE(): WeierstrassOpts<T> {
return CURVE;
}
/** Does NOT validate if the point is valid. Use `.assertValidity()`. */
static fromAffine(p: AffinePoint<T>): Point {
const { x, y } = p || {};
if (!p || !Fp.isValid(x) || !Fp.isValid(y)) throw new Error('invalid affine point');
if (p instanceof Point) throw new Error('projective point not allowed');
// (0, 0) would've produced (0, 0, 1) - instead, we need (0, 1, 0)
if (Fp.is0(x) && Fp.is0(y)) return Point.ZERO;
return new Point(x, y, Fp.ONE);
}
static fromBytes(bytes: Uint8Array): Point {
const P = Point.fromAffine(decodePoint(abytes(bytes, undefined, 'point')));
P.assertValidity();
return P;
}
static fromHex(hex: string): Point {
return Point.fromBytes(hexToBytes(hex));
}
get x(): T {
return this.toAffine().x;
}
get y(): T {
return this.toAffine().y;
}
/**
*
* @param windowSize
* @param isLazy true will defer table computation until the first multiplication
* @returns
*/
precompute(windowSize: number = 8, isLazy = true): Point {
wnaf.createCache(this, windowSize);
if (!isLazy) this.multiply(_3n); // random number
return this;
}
// TODO: return `this`
/** A point on curve is valid if it conforms to equation. */
assertValidity(): void {
assertValidMemo(this);
}
hasEvenY(): boolean {
const { y } = this.toAffine();
if (!Fp.isOdd) throw new Error("Field doesn't support isOdd");
return !Fp.isOdd(y);
}
/** Compare one point to another. */
equals(other: Point): boolean {
aprjpoint(other);
const { X: X1, Y: Y1, Z: Z1 } = this;
const { X: X2, Y: Y2, Z: Z2 } = other;
const U1 = Fp.eql(Fp.mul(X1, Z2), Fp.mul(X2, Z1));
const U2 = Fp.eql(Fp.mul(Y1, Z2), Fp.mul(Y2, Z1));
return U1 && U2;
}
/** Flips point to one corresponding to (x, -y) in Affine coordinates. */
negate(): Point {
return new Point(this.X, Fp.neg(this.Y), this.Z);
}
// Renes-Costello-Batina exception-free doubling formula.
// There is 30% faster Jacobian formula, but it is not complete.
// https://eprint.iacr.org/2015/1060, algorithm 3
// Cost: 8M + 3S + 3*a + 2*b3 + 15add.
double() {
const { a, b } = CURVE;
const b3 = Fp.mul(b, _3n);
const { X: X1, Y: Y1, Z: Z1 } = this;
let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
let t0 = Fp.mul(X1, X1); // step 1
let t1 = Fp.mul(Y1, Y1);
let t2 = Fp.mul(Z1, Z1);
let t3 = Fp.mul(X1, Y1);
t3 = Fp.add(t3, t3); // step 5
Z3 = Fp.mul(X1, Z1);
Z3 = Fp.add(Z3, Z3);
X3 = Fp.mul(a, Z3);
Y3 = Fp.mul(b3, t2);
Y3 = Fp.add(X3, Y3); // step 10
X3 = Fp.sub(t1, Y3);
Y3 = Fp.add(t1, Y3);
Y3 = Fp.mul(X3, Y3);
X3 = Fp.mul(t3, X3);
Z3 = Fp.mul(b3, Z3); // step 15
t2 = Fp.mul(a, t2);
t3 = Fp.sub(t0, t2);
t3 = Fp.mul(a, t3);
t3 = Fp.add(t3, Z3);
Z3 = Fp.add(t0, t0); // step 20
t0 = Fp.add(Z3, t0);
t0 = Fp.add(t0, t2);
t0 = Fp.mul(t0, t3);
Y3 = Fp.add(Y3, t0);
t2 = Fp.mul(Y1, Z1); // step 25
t2 = Fp.add(t2, t2);
t0 = Fp.mul(t2, t3);
X3 = Fp.sub(X3, t0);
Z3 = Fp.mul(t2, t1);
Z3 = Fp.add(Z3, Z3); // step 30
Z3 = Fp.add(Z3, Z3);
return new Point(X3, Y3, Z3);
}
// Renes-Costello-Batina exception-free addition formula.
// There is 30% faster Jacobian formula, but it is not complete.
// https://eprint.iacr.org/2015/1060, algorithm 1
// Cost: 12M + 0S + 3*a + 3*b3 + 23add.
add(other: Point): Point {
aprjpoint(other);
const { X: X1, Y: Y1, Z: Z1 } = this;
const { X: X2, Y: Y2, Z: Z2 } = other;
let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
const a = CURVE.a;
const b3 = Fp.mul(CURVE.b, _3n);
let t0 = Fp.mul(X1, X2); // step 1
let t1 = Fp.mul(Y1, Y2);
let t2 = Fp.mul(Z1, Z2);
let t3 = Fp.add(X1, Y1);
let t4 = Fp.add(X2, Y2); // step 5
t3 = Fp.mul(t3, t4);
t4 = Fp.add(t0, t1);
t3 = Fp.sub(t3, t4);
t4 = Fp.add(X1, Z1);
let t5 = Fp.add(X2, Z2); // step 10
t4 = Fp.mul(t4, t5);
t5 = Fp.add(t0, t2);
t4 = Fp.sub(t4, t5);
t5 = Fp.add(Y1, Z1);
X3 = Fp.add(Y2, Z2); // step 15
t5 = Fp.mul(t5, X3);
X3 = Fp.add(t1, t2);
t5 = Fp.sub(t5, X3);
Z3 = Fp.mul(a, t4);
X3 = Fp.mul(b3, t2); // step 20
Z3 = Fp.add(X3, Z3);
X3 = Fp.sub(t1, Z3);
Z3 = Fp.add(t1, Z3);
Y3 = Fp.mul(X3, Z3);
t1 = Fp.add(t0, t0); // step 25
t1 = Fp.add(t1, t0);
t2 = Fp.mul(a, t2);
t4 = Fp.mul(b3, t4);
t1 = Fp.add(t1, t2);
t2 = Fp.sub(t0, t2); // step 30
t2 = Fp.mul(a, t2);
t4 = Fp.add(t4, t2);
t0 = Fp.mul(t1, t4);
Y3 = Fp.add(Y3, t0);
t0 = Fp.mul(t5, t4); // step 35
X3 = Fp.mul(t3, X3);
X3 = Fp.sub(X3, t0);
t0 = Fp.mul(t3, t1);
Z3 = Fp.mul(t5, Z3);
Z3 = Fp.add(Z3, t0); // step 40
return new Point(X3, Y3, Z3);
}
subtract(other: Point) {
return this.add(other.negate());
}
is0(): boolean {
return this.equals(Point.ZERO);
}
/**
* Constant time multiplication.
* Uses wNAF method. Windowed method may be 10% faster,
* but takes 2x longer to generate and consumes 2x memory.
* Uses precomputes when available.
* Uses endomorphism for Koblitz curves.
* @param scalar by which the point would be multiplied
* @returns New point
*/
multiply(scalar: bigint): Point {
const { endo } = extraOpts;
if (!Fn.isValidNot0(scalar)) throw new Error('invalid scalar: out of range'); // 0 is invalid
let point: Point, fake: Point; // Fake point is used to const-time mult
const mul = (n: bigint) => wnaf.cached(this, n, (p) => normalizeZ(Point, p));
/** See docs for {@link EndomorphismOpts} */
if (endo) {
const { k1neg, k1, k2neg, k2 } = splitEndoScalarN(scalar);
const { p: k1p, f: k1f } = mul(k1);
const { p: k2p, f: k2f } = mul(k2);
fake = k1f.add(k2f);
point = finishEndo(endo.beta, k1p, k2p, k1neg, k2neg);
} else {
const { p, f } = mul(scalar);
point = p;
fake = f;
}
// Normalize `z` for both points, but return only real one
return normalizeZ(Point, [point, fake])[0];
}
/**
* Non-constant-time multiplication. Uses double-and-add algorithm.
* It's faster, but should only be used when you don't care about
* an exposed secret key e.g. sig verification, which works over *public* keys.
*/
multiplyUnsafe(sc: bigint): Point {
const { endo } = extraOpts;
const p = this as Point;
if (!Fn.isValid(sc)) throw new Error('invalid scalar: out of range'); // 0 is valid
if (sc === _0n || p.is0()) return Point.ZERO; // 0
if (sc === _1n) return p; // 1
if (wnaf.hasCache(this)) return this.multiply(sc); // precomputes
// We don't have method for double scalar multiplication (aP + bQ):
// Even with using Strauss-Shamir trick, it's 35% slower than naïve mul+add.
if (endo) {
const { k1neg, k1, k2neg, k2 } = splitEndoScalarN(sc);
const { p1, p2 } = mulEndoUnsafe(Point, p, k1, k2); // 30% faster vs wnaf.unsafe
return finishEndo(endo.beta, p1, p2, k1neg, k2neg);
} else {
return wnaf.unsafe(p, sc);
}
}
/**
* Converts Projective point to affine (x, y) coordinates.
* @param invertedZ Z^-1 (inverted zero) - optional, precomputation is useful for invertBatch
*/
toAffine(invertedZ?: T): AffinePoint<T> {
return toAffineMemo(this, invertedZ);
}
/**
* Checks whether Point is free of torsion elements (is in prime subgroup).
* Always torsion-free for cofactor=1 curves.
*/
isTorsionFree(): boolean {
const { isTorsionFree } = extraOpts;
if (cofactor === _1n) return true;
if (isTorsionFree) return isTorsionFree(Point, this);
return wnaf.unsafe(this, CURVE_ORDER).is0();
}
clearCofactor(): Point {
const { clearCofactor } = extraOpts;
if (cofactor === _1n) return this; // Fast-path
if (clearCofactor) return clearCofactor(Point, this) as Point;
return this.multiplyUnsafe(cofactor);
}
isSmallOrder(): boolean {
// can we use this.clearCofactor()?
return this.multiplyUnsafe(cofactor).is0();
}
toBytes(isCompressed = true): Uint8Array {
abool(isCompressed, 'isCompressed');
this.assertValidity();
return encodePoint(Point, this, isCompressed);
}
toHex(isCompressed = true): string {
return bytesToHex(this.toBytes(isCompressed));
}
toString() {
return `<Point ${this.is0() ? 'ZERO' : this.toHex()}>`;
}
}
const bits = Fn.BITS;
const wnaf = new wNAF(Point, extraOpts.endo ? Math.ceil(bits / 2) : bits);
Point.BASE.precompute(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
return Point;
}
/** Methods of ECDSA signature instance. */
export interface ECDSASignature {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
addRecoveryBit(recovery: number): ECDSASignature & { readonly recovery: number };
hasHighS(): boolean;
recoverPublicKey(messageHash: Uint8Array): WeierstrassPoint<bigint>;
toBytes(format?: string): Uint8Array;
toHex(format?: string): string;
}
/** Methods of ECDSA signature constructor. */
export type ECDSASignatureCons = {
new (r: bigint, s: bigint, recovery?: number): ECDSASignature;
fromBytes(bytes: Uint8Array, format?: ECDSASignatureFormat): ECDSASignature;
fromHex(hex: string, format?: ECDSASignatureFormat): ECDSASignature;
};
// Points start with byte 0x02 when y is even; otherwise 0x03
function pprefix(hasEvenY: boolean): Uint8Array {
return Uint8Array.of(hasEvenY ? 0x02 : 0x03);
}
/**
* Implementation of the Shallue and van de Woestijne method for any weierstrass curve.
* TODO: check if there is a way to merge this with uvRatio in Edwards; move to modular.
* b = True and y = sqrt(u / v) if (u / v) is square in F, and
* b = False and y = sqrt(Z * (u / v)) otherwise.
* @param Fp
* @param Z
* @returns
*/
export function SWUFpSqrtRatio<T>(
Fp: IField<T>,
Z: T
): (u: T, v: T) => { isValid: boolean; value: T } {
// Generic implementation
const q = Fp.ORDER;
let l = _0n;
for (let o = q - _1n; o % _2n === _0n; o /= _2n) l += _1n;
const c1 = l; // 1. c1, the largest integer such that 2^c1 divides q - 1.
// We need 2n ** c1 and 2n ** (c1-1). We can't use **; but we can use <<.
// 2n ** c1 == 2n << (c1-1)
const _2n_pow_c1_1 = _2n << (c1 - _1n - _1n);
const _2n_pow_c1 = _2n_pow_c1_1 * _2n;
const c2 = (q - _1n) / _2n_pow_c1; // 2. c2 = (q - 1) / (2^c1) # Integer arithmetic
const c3 = (c2 - _1n) / _2n; // 3. c3 = (c2 - 1) / 2 # Integer arithmetic
const c4 = _2n_pow_c1 - _1n; // 4. c4 = 2^c1 - 1 # Integer arithmetic
const c5 = _2n_pow_c1_1; // 5. c5 = 2^(c1 - 1) # Integer arithmetic
const c6 = Fp.pow(Z, c2); // 6. c6 = Z^c2
const c7 = Fp.pow(Z, (c2 + _1n) / _2n); // 7. c7 = Z^((c2 + 1) / 2)
let sqrtRatio = (u: T, v: T): { isValid: boolean; value: T } => {
let tv1 = c6; // 1. tv1 = c6
let tv2 = Fp.pow(v, c4); // 2. tv2 = v^c4
let tv3 = Fp.sqr(tv2); // 3. tv3 = tv2^2
tv3 = Fp.mul(tv3, v); // 4. tv3 = tv3 * v
let tv5 = Fp.mul(u, tv3); // 5. tv5 = u * tv3
tv5 = Fp.pow(tv5, c3); // 6. tv5 = tv5^c3
tv5 = Fp.mul(tv5, tv2); // 7. tv5 = tv5 * tv2
tv2 = Fp.mul(tv5, v); // 8. tv2 = tv5 * v
tv3 = Fp.mul(tv5, u); // 9. tv3 = tv5 * u
let tv4 = Fp.mul(tv3, tv2); // 10. tv4 = tv3 * tv2
tv5 = Fp.pow(tv4, c5); // 11. tv5 = tv4^c5
let isQR = Fp.eql(tv5, Fp.ONE); // 12. isQR = tv5 == 1
tv2 = Fp.mul(tv3, c7); // 13. tv2 = tv3 * c7
tv5 = Fp.mul(tv4, tv1); // 14. tv5 = tv4 * tv1
tv3 = Fp.cmov(tv2, tv3, isQR); // 15. tv3 = CMOV(tv2, tv3, isQR)
tv4 = Fp.cmov(tv5, tv4, isQR); // 16. tv4 = CMOV(tv5, tv4, isQR)
// 17. for i in (c1, c1 - 1, ..., 2):
for (let i = c1; i > _1n; i--) {
let tv5 = i - _2n; // 18. tv5 = i - 2
tv5 = _2n << (tv5 - _1n); // 19. tv5 = 2^tv5
let tvv5 = Fp.pow(tv4, tv5); // 20. tv5 = tv4^tv5
const e1 = Fp.eql(tvv5, Fp.ONE); // 21. e1 = tv5 == 1
tv2 = Fp.mul(tv3, tv1); // 22. tv2 = tv3 * tv1
tv1 = Fp.mul(tv1, tv1); // 23. tv1 = tv1 * tv1
tvv5 = Fp.mul(tv4, tv1); // 24. tv5 = tv4 * tv1
tv3 = Fp.cmov(tv2, tv3, e1); // 25. tv3 = CMOV(tv2, tv3, e1)
tv4 = Fp.cmov(tvv5, tv4, e1); // 26. tv4 = CMOV(tv5, tv4, e1)
}
return { isValid: isQR, value: tv3 };
};
if (Fp.ORDER % _4n === _3n) {
// sqrt_ratio_3mod4(u, v)
const c1 = (Fp.ORDER - _3n) / _4n; // 1. c1 = (q - 3) / 4 # Integer arithmetic
const c2 = Fp.sqrt(Fp.neg(Z)); // 2. c2 = sqrt(-Z)
sqrtRatio = (u: T, v: T) => {
let tv1 = Fp.sqr(v); // 1. tv1 = v^2
const tv2 = Fp.mul(u, v); // 2. tv2 = u * v
tv1 = Fp.mul(tv1, tv2); // 3. tv1 = tv1 * tv2
let y1 = Fp.pow(tv1, c1); // 4. y1 = tv1^c1
y1 = Fp.mul(y1, tv2); // 5. y1 = y1 * tv2
const y2 = Fp.mul(y1, c2); // 6. y2 = y1 * c2
const tv3 = Fp.mul(Fp.sqr(y1), v); // 7. tv3 = y1^2; 8. tv3 = tv3 * v
const isQR = Fp.eql(tv3, u); // 9. isQR = tv3 == u
let y = Fp.cmov(y2, y1, isQR); // 10. y = CMOV(y2, y1, isQR)
return { isValid: isQR, value: y }; // 11. return (isQR, y) isQR ? y : y*c2
};
}
// No curves uses that
// if (Fp.ORDER % _8n === _5n) // sqrt_ratio_5mod8
return sqrtRatio;
}
/**
* Simplified Shallue-van de Woestijne-Ulas Method
* https://www.rfc-editor.org/rfc/rfc9380#section-6.6.2
*/
export function mapToCurveSimpleSWU<T>(
Fp: IField<T>,
opts: {
A: T;
B: T;
Z: T;
}
): (u: T) => { x: T; y: T } {
validateField(Fp);
const { A, B, Z } = opts;
if (!Fp.isValid(A) || !Fp.isValid(B) || !Fp.isValid(Z))
throw new Error('mapToCurveSimpleSWU: invalid opts');
const sqrtRatio = SWUFpSqrtRatio(Fp, Z);
if (!Fp.isOdd) throw new Error('Field does not have .isOdd()');
// Input: u, an element of F.
// Output: (x, y), a point on E.
return (u: T): { x: T; y: T } => {
// prettier-ignore
let tv1, tv2, tv3, tv4, tv5, tv6, x, y;
tv1 = Fp.sqr(u); // 1. tv1 = u^2
tv1 = Fp.mul(tv1, Z); // 2. tv1 = Z * tv1
tv2 = Fp.sqr(tv1); // 3. tv2 = tv1^2
tv2 = Fp.add(tv2, tv1); // 4. tv2 = tv2 + tv1
tv3 = Fp.add(tv2, Fp.ONE); // 5. tv3 = tv2 + 1
tv3 = Fp.mul(tv3, B); // 6. tv3 = B * tv3
tv4 = Fp.cmov(Z, Fp.neg(tv2), !Fp.eql(tv2, Fp.ZERO)); // 7. tv4 = CMOV(Z, -tv2, tv2 != 0)
tv4 = Fp.mul(tv4, A); // 8. tv4 = A * tv4
tv2 = Fp.sqr(tv3); // 9. tv2 = tv3^2
tv6 = Fp.sqr(tv4); // 10. tv6 = tv4^2
tv5 = Fp.mul(tv6, A); // 11. tv5 = A * tv6
tv2 = Fp.add(tv2, tv5); // 12. tv2 = tv2 + tv5
tv2 = Fp.mul(tv2, tv3); // 13. tv2 = tv2 * tv3
tv6 = Fp.mul(tv6, tv4); // 14. tv6 = tv6 * tv4
tv5 = Fp.mul(tv6, B); // 15. tv5 = B * tv6
tv2 = Fp.add(tv2, tv5); // 16. tv2 = tv2 + tv5
x = Fp.mul(tv1, tv3); // 17. x = tv1 * tv3
const { isValid, value } = sqrtRatio(tv2, tv6); // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6)
y = Fp.mul(tv1, u); // 19. y = tv1 * u -> Z * u^3 * y1
y = Fp.mul(y, value); // 20. y = y * y1
x = Fp.cmov(x, tv3, isValid); // 21. x = CMOV(x, tv3, is_gx1_square)
y = Fp.cmov(y, value, isValid); // 22. y = CMOV(y, y1, is_gx1_square)
const e1 = Fp.isOdd!(u) === Fp.isOdd!(y); // 23. e1 = sgn0(u) == sgn0(y)
y = Fp.cmov(Fp.neg(y), y, e1); // 24. y = CMOV(-y, y, e1)
const tv4_inv = FpInvertBatch(Fp, [tv4], true)[0];
x = Fp.mul(x, tv4_inv); // 25. x = x / tv4
return { x, y };
};
}
function getWLengths<T>(Fp: IField<T>, Fn: IField<bigint>) {
return {
secretKey: Fn.BYTES,
publicKey: 1 + Fp.BYTES,
publicKeyUncompressed: 1 + 2 * Fp.BYTES,
publicKeyHasPrefix: true,
signature: 2 * Fn.BYTES,
};
}
/**
* Sometimes users only need getPublicKey, getSharedSecret, and secret key handling.
* This helper ensures no signature functionality is present. Less code, smaller bundle size.
*/
export function ecdh(
Point: WeierstrassPointCons<bigint>,
ecdhOpts: { randomBytes?: (bytesLength?: number) => Uint8Array } = {}
): ECDH {
const { Fn } = Point;
const randomBytes_ = ecdhOpts.randomBytes || wcRandomBytes;
const lengths = Object.assign(getWLengths(Point.Fp, Fn), { seed: getMinHashLength(Fn.ORDER) });
function isValidSecretKey(secretKey: Uint8Array) {
try {
const num = Fn.fromBytes(secretKey);
return Fn.isValidNot0(num);
} catch (error) {
return false;
}
}
function isValidPublicKey(publicKey: Uint8Array, isCompressed?: boolean): boolean {
const { publicKey: comp, publicKeyUncompressed } = lengths;
try {
const l = publicKey.length;
if (isCompressed === true && l !== comp) return false;
if (isCompressed === false && l !== publicKeyUncompressed) return false;
return !!Point.fromBytes(publicKey);
} catch (error) {
return false;
}
}
/**
* Produces cryptographically secure secret key from random of size
* (groupLen + ceil(groupLen / 2)) with modulo bias being negligible.
*/
function randomSecretKey(seed = randomBytes_(lengths.seed)): Uint8Array {
return mapHashToField(abytes(seed, lengths.seed, 'seed'), Fn.ORDER);
}
/**
* Computes public key for a secret key. Checks for validity of the secret key.
* @param isCompressed whether to return compact (default), or full key
* @returns Public key, full when isCompressed=false; short when isCompressed=true
*/
function getPublicKey(secretKey: Uint8Array, isCompressed = true): Uint8Array {
return Point.BASE.multiply(Fn.fromBytes(secretKey)).toBytes(isCompressed);
}
/**
* Quick and dirty check for item being public key. Does not validate hex, or being on-curve.
*/
function isProbPub(item: Uint8Array): boolean | undefined {
const { secretKey, publicKey, publicKeyUncompressed } = lengths;
if (!isBytes(item)) return undefined;
if (('_lengths' in Fn && Fn._lengths) || secretKey === publicKey) return undefined;
const l = abytes(item, undefined, 'key').length;
return l === publicKey || l === publicKeyUncompressed;
}
/**
* ECDH (Elliptic Curve Diffie Hellman).
* Computes shared public key from secret key A and public key B.
* Checks: 1) secret key validity 2) shared key is on-curve.
* Does NOT hash the result.
* @param isCompressed whether to return compact (default), or full key
* @returns shared public key
*/
function getSharedSecret(
secretKeyA: Uint8Array,
publicKeyB: Uint8Array,
isCompressed = true
): Uint8Array {
if (isProbPub(secretKeyA) === true) throw new Error('first arg must be private key');
if (isProbPub(publicKeyB) === false) throw new Error('second arg must be public key');
const s = Fn.fromBytes(secretKeyA);
const b = Point.fromBytes(publicKeyB); // checks for being on-curve
return b.multiply(s).toBytes(isCompressed);
}
const utils = {
isValidSecretKey,
isValidPublicKey,
randomSecretKey,
};
const keygen = createKeygen(randomSecretKey, getPublicKey);
return Object.freeze({ getPublicKey, getSharedSecret, keygen, Point, utils, lengths });
}
/**
* Creates ECDSA signing interface for given elliptic curve `Point` and `hash` function.
*
* @param Point created using {@link weierstrass} function
* @param hash used for 1) message prehash-ing 2) k generation in `sign`, using hmac_drbg(hash)
* @param ecdsaOpts rarely needed, see {@link ECDSAOpts}
*
* @example
* ```js
* const p256_Point = weierstrass(...);
* const p256_sha256 = ecdsa(p256_Point, sha256);
* const p256_sha224 = ecdsa(p256_Point, sha224);
* const p256_sha224_r = ecdsa(p256_Point, sha224, { randomBytes: (length) => { ... } });
* ```
*/
export function ecdsa(
Point: WeierstrassPointCons<bigint>,
hash: CHash,
ecdsaOpts: ECDSAOpts = {}
): ECDSA {
ahash(hash);
validateObject(
ecdsaOpts,
{},
{
hmac: 'function',
lowS: 'boolean',
randomBytes: 'function',
bits2int: 'function',
bits2int_modN: 'function',
}
);
ecdsaOpts = Object.assign({}, ecdsaOpts);
const randomBytes = ecdsaOpts.randomBytes || wcRandomBytes;
const hmac = ecdsaOpts.hmac || ((key, msg) => nobleHmac(hash, key, msg));
const { Fp, Fn } = Point;
const { ORDER: CURVE_ORDER, BITS: fnBits } = Fn;
const { keygen, getPublicKey, getSharedSecret, utils, lengths } = ecdh(Point, ecdsaOpts);
const defaultSigOpts: Required<ECDSASignOpts> = {
prehash: true,
lowS: typeof ecdsaOpts.lowS === 'boolean' ? ecdsaOpts.lowS : true,
format: 'compact' as ECDSASignatureFormat,
extraEntropy: false,
};
const hasLargeCofactor = CURVE_ORDER * _2n < Fp.ORDER; // Won't CURVE().h > 2n be more effective?
function isBiggerThanHalfOrder(number: bigint) {
const HALF = CURVE_ORDER >> _1n;
return number > HALF;
}
function validateRS(title: string, num: bigint): bigint {
if (!Fn.isValidNot0(num))
throw new Error(`invalid signature ${title}: out of range 1..Point.Fn.ORDER`);
return num;
}
function assertSmallCofactor(): void {
// ECDSA recovery is hard for cofactor > 1 curves.
// In sign, `r = q.x mod n`, and here we recover q.x from r.
// While recovering q.x >= n, we need to add r+n for cofactor=1 curves.
// However, for cofactor>1, r+n may not get q.x:
// r+n*i would need to be done instead where i is unknown.
// To easily get i, we either need to:
// a. increase amount of valid recid values (4, 5...); OR
// b. prohibit non-prime-order signatures (recid > 1).
if (hasLargeCofactor)
throw new Error('"recovered" sig type is not supported for cofactor >2 curves');
}
function validateSigLength(bytes: Uint8Array, format: ECDSASignatureFormat) {
validateSigFormat(format);
const size = lengths.signature!;
const sizer = format === 'compact' ? size : format === 'recovered' ? size + 1 : undefined;
return abytes(bytes, sizer);
}
/**
* ECDSA signature with its (r, s) properties. Supports compact, recovered & DER representations.
*/
class Signature implements ECDSASignature {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
constructor(r: bigint, s: bigint, recovery?: number) {
this.r = validateRS('r', r); // r in [1..N-1];
this.s = validateRS('s', s); // s in [1..N-1];
if (recovery != null) {
assertSmallCofactor();
if (![0, 1, 2, 3].includes(recovery)) throw new Error('invalid recovery id');
this.recovery = recovery;
}
Object.freeze(this);
}
static fromBytes(
bytes: Uint8Array,
format: ECDSASignatureFormat = defaultSigOpts.format
): Signature {
validateSigLength(bytes, format);
let recid: number | undefined;
if (format === 'der') {
const { r, s } = DER.toSig(abytes(bytes));
return new Signature(r, s);
}
if (format === 'recovered') {
recid = bytes[0];
format = 'compact';
bytes = bytes.subarray(1);
}
const L = lengths.signature! / 2;
const r = bytes.subarray(0, L);
const s = bytes.subarray(L, L * 2);
return new Signature(Fn.fromBytes(r), Fn.fromBytes(s), recid);
}
static fromHex