UNPKG

@noble/curves

Version:

Audited & minimal JS implementation of elliptic curve cryptography

520 lines (495 loc) 18 kB
/** * Experimental implementation of NTT / FFT (Fast Fourier Transform) over finite fields. * API may change at any time. The code has not been audited. Feature requests are welcome. * @module */ import type { IField } from './modular.ts'; export interface MutableArrayLike<T> { [index: number]: T; length: number; slice(start?: number, end?: number): this; [Symbol.iterator](): Iterator<T>; } function checkU32(n: number) { // 0xff_ff_ff_ff if (!Number.isSafeInteger(n) || n < 0 || n > 0xffffffff) throw new Error('wrong u32 integer:' + n); return n; } /** Checks if integer is in form of `1 << X` */ export function isPowerOfTwo(x: number): boolean { checkU32(x); return (x & (x - 1)) === 0 && x !== 0; } export function nextPowerOfTwo(n: number): number { checkU32(n); if (n <= 1) return 1; return (1 << (log2(n - 1) + 1)) >>> 0; } export function reverseBits(n: number, bits: number): number { checkU32(n); let reversed = 0; for (let i = 0; i < bits; i++, n >>>= 1) reversed = (reversed << 1) | (n & 1); return reversed; } /** Similar to `bitLen(x)-1` but much faster for small integers, like indices */ export function log2(n: number): number { checkU32(n); return 31 - Math.clz32(n); } /** * Moves lowest bit to highest position, which at first step splits * array on even and odd indices, then it applied again to each part, * which is core of fft */ export function bitReversalInplace<T extends MutableArrayLike<any>>(values: T): T { const n = values.length; if (n < 2 || !isPowerOfTwo(n)) throw new Error('n must be a power of 2 and greater than 1. Got ' + n); const bits = log2(n); for (let i = 0; i < n; i++) { const j = reverseBits(i, bits); if (i < j) { const tmp = values[i]; values[i] = values[j]; values[j] = tmp; } } return values; } export function bitReversalPermutation<T>(values: T[]): T[] { return bitReversalInplace(values.slice()) as T[]; } const _1n = /** @__PURE__ */ BigInt(1); function findGenerator(field: IField<bigint>) { let G = BigInt(2); for (; field.eql(field.pow(G, field.ORDER >> _1n), field.ONE); G++); return G; } export type RootsOfUnity = { roots: (bits: number) => bigint[]; brp(bits: number): bigint[]; inverse(bits: number): bigint[]; omega: (bits: number) => bigint; clear: () => void; }; /** We limit roots up to 2**31, which is a lot: 2-billion polynomimal should be rare. */ export function rootsOfUnity(field: IField<bigint>, generator?: bigint): RootsOfUnity { // Factor field.ORDER-1 as oddFactor * 2^powerOfTwo let oddFactor = field.ORDER - _1n; let powerOfTwo = 0; for (; (oddFactor & _1n) !== _1n; powerOfTwo++, oddFactor >>= _1n); // Find non quadratic residue let G = generator !== undefined ? BigInt(generator) : findGenerator(field); // Powers of generator const omegas: bigint[] = new Array(powerOfTwo + 1); omegas[powerOfTwo] = field.pow(G, oddFactor); for (let i = powerOfTwo; i > 0; i--) omegas[i - 1] = field.sqr(omegas[i]); // Compute all roots of unity for powers up to maxPower const rootsCache: bigint[][] = []; const checkBits = (bits: number) => { checkU32(bits); if (bits > 31 || bits > powerOfTwo) throw new Error('rootsOfUnity: wrong bits ' + bits + ' powerOfTwo=' + powerOfTwo); return bits; }; const precomputeRoots = (maxPower: number) => { checkBits(maxPower); for (let power = maxPower; power >= 0; power--) { if (rootsCache[power]) continue; // Skip if we've already computed roots for this power const rootsAtPower: bigint[] = []; for (let j = 0, cur = field.ONE; j < 2 ** power; j++, cur = field.mul(cur, omegas[power])) rootsAtPower.push(cur); rootsCache[power] = rootsAtPower; } return rootsCache[maxPower]; }; const brpCache = new Map<number, bigint[]>(); const inverseCache = new Map<number, bigint[]>(); // NOTE: we use bits instead of power, because power = 2**bits, // but power is not neccesary isPowerOfTwo(power)! return { roots: (bits: number): bigint[] => { const b = checkBits(bits); return precomputeRoots(b); }, brp(bits: number): bigint[] { const b = checkBits(bits); if (brpCache.has(b)) return brpCache.get(b)!; else { const res = bitReversalPermutation(this.roots(b)); brpCache.set(b, res); return res; } }, inverse(bits: number): bigint[] { const b = checkBits(bits); if (inverseCache.has(b)) return inverseCache.get(b)!; else { const res = field.invertBatch(this.roots(b)); inverseCache.set(b, res); return res; } }, omega: (bits: number): bigint => omegas[checkBits(bits)], clear: (): void => { rootsCache.splice(0, rootsCache.length); brpCache.clear(); }, }; } export type Polynomial<T> = MutableArrayLike<T>; /** * Maps great to Field<bigint>, but not to Group (EC points): * - inv from scalar field * - we need multiplyUnsafe here, instead of multiply for speed * - multiplyUnsafe is safe in the context: we do mul(rootsOfUnity), which are public and sparse */ export type FFTOpts<T, R> = { add: (a: T, b: T) => T; sub: (a: T, b: T) => T; mul: (a: T, scalar: R) => T; inv: (a: R) => R; }; export type FFTCoreOpts<R> = { N: number; roots: Polynomial<R>; dit: boolean; invertButterflies?: boolean; skipStages?: number; brp?: boolean; }; export type FFTCoreLoop<T> = <P extends Polynomial<T>>(values: P) => P; /** * Constructs different flavors of FFT. radix2 implementation of low level mutating API. Flavors: * * - DIT (Decimation-in-Time): Bottom-Up (leaves -> root), Cool-Turkey * - DIF (Decimation-in-Frequency): Top-Down (root -> leaves), Gentleman–Sande * * DIT takes brp input, returns natural output. * DIF takes natural input, returns brp output. * * The output is actually identical. Time / frequence distinction is not meaningful * for Polynomial multiplication in fields. * Which means if protocol supports/needs brp output/inputs, then we can skip this step. * * Cyclic NTT: Rq = Zq[x]/(x^n-1). butterfly_DIT+loop_DIT OR butterfly_DIF+loop_DIT, roots are omega * Negacyclic NTT: Rq = Zq[x]/(x^n+1). butterfly_DIT+loop_DIF, at least for mlkem / mldsa */ export const FFTCore = <T, R>(F: FFTOpts<T, R>, coreOpts: FFTCoreOpts<R>): FFTCoreLoop<T> => { const { N, roots, dit, invertButterflies = false, skipStages = 0, brp = true } = coreOpts; const bits = log2(N); if (!isPowerOfTwo(N)) throw new Error('FFT: Polynomial size should be power of two'); const isDit = dit !== invertButterflies; isDit; return <P extends Polynomial<T>>(values: P): P => { if (values.length !== N) throw new Error('FFT: wrong Polynomial length'); if (dit && brp) bitReversalInplace(values); for (let i = 0, g = 1; i < bits - skipStages; i++) { // For each stage s (sub-FFT length m = 2^s) const s = dit ? i + 1 + skipStages : bits - i; const m = 1 << s; const m2 = m >> 1; const stride = N >> s; // Loop over each subarray of length m for (let k = 0; k < N; k += m) { // Loop over each butterfly within the subarray for (let j = 0, grp = g++; j < m2; j++) { const rootPos = invertButterflies ? (dit ? N - grp : grp) : j * stride; const i0 = k + j; const i1 = k + j + m2; const omega = roots[rootPos]; const b = values[i1]; const a = values[i0]; // Inlining gives us 10% perf in kyber vs functions if (isDit) { const t = F.mul(b, omega); // Standard DIT butterfly values[i0] = F.add(a, t); values[i1] = F.sub(a, t); } else if (invertButterflies) { values[i0] = F.add(b, a); // DIT loop + inverted butterflies (Kyber decode) values[i1] = F.mul(F.sub(b, a), omega); } else { values[i0] = F.add(a, b); // Standard DIF butterfly values[i1] = F.mul(F.sub(a, b), omega); } } } } if (!dit && brp) bitReversalInplace(values); return values; }; }; export type FFTMethods<T> = { direct<P extends Polynomial<T>>(values: P, brpInput?: boolean, brpOutput?: boolean): P; inverse<P extends Polynomial<T>>(values: P, brpInput?: boolean, brpOutput?: boolean): P; }; /** * NTT aka FFT over finite field (NOT over complex numbers). * Naming mirrors other libraries. */ export function FFT<T>(roots: RootsOfUnity, opts: FFTOpts<T, bigint>): FFTMethods<T> { const getLoop = ( N: number, roots: Polynomial<bigint>, brpInput = false, brpOutput = false ): (<P extends Polynomial<T>>(values: P) => P) => { if (brpInput && brpOutput) { // we cannot optimize this case, but lets support it anyway return (values) => FFTCore(opts, { N, roots, dit: false, brp: false })(bitReversalInplace(values)); } if (brpInput) return FFTCore(opts, { N, roots, dit: true, brp: false }); if (brpOutput) return FFTCore(opts, { N, roots, dit: false, brp: false }); return FFTCore(opts, { N, roots, dit: true, brp: true }); // all natural }; return { direct<P extends Polynomial<T>>(values: P, brpInput = false, brpOutput = false): P { const N = values.length; if (!isPowerOfTwo(N)) throw new Error('FFT: Polynomial size should be power of two'); const bits = log2(N); return getLoop(N, roots.roots(bits), brpInput, brpOutput)<P>(values.slice()); }, inverse<P extends Polynomial<T>>(values: P, brpInput = false, brpOutput = false): P { const N = values.length; const bits = log2(N); const res = getLoop(N, roots.inverse(bits), brpInput, brpOutput)(values.slice()); const ivm = opts.inv(BigInt(values.length)); // scale // we can get brp output if we use dif instead of dit! for (let i = 0; i < res.length; i++) res[i] = opts.mul(res[i], ivm); // Allows to re-use non-inverted roots, but is VERY fragile // return [res[0]].concat(res.slice(1).reverse()); // inverse calculated as pow(-1), which transforms into ω^{-kn} (-> reverses indices) return res; }, }; } export type CreatePolyFn<P extends Polynomial<T>, T> = (len: number, elm?: T) => P; export type PolyFn<P extends Polynomial<T>, T> = { roots: RootsOfUnity; create: CreatePolyFn<P, T>; length?: number; // optional enforced size degree: (a: P) => number; extend: (a: P, len: number) => P; add: (a: P, b: P) => P; // fc(x) = fa(x) + fb(x) sub: (a: P, b: P) => P; // fc(x) = fa(x) - fb(x) mul: (a: P, b: P | T) => P; // fc(x) = fa(x) * fb(x) OR fc(x) = fa(x) * scalar (same as field) dot: (a: P, b: P) => P; // point-wise coeff multiplication convolve: (a: P, b: P) => P; shift: (p: P, factor: bigint) => P; // point-wise coeffcient shift clone: (a: P) => P; // Eval eval: (a: P, basis: P) => T; // y = fc(x) monomial: { basis: (x: T, n: number) => P; eval: (a: P, x: T) => T; }; lagrange: { basis: (x: T, n: number, brp?: boolean) => P; eval: (a: P, x: T, brp?: boolean) => T; }; // Complex vanishing: (roots: P) => P; // f(x) = 0 for every x in roots }; /** * Poly wants a cracker. * * Polynomials are functions like `y=f(x)`, which means when we multiply two polynomials, result is * function `f3(x) = f1(x) * f2(x)`, we don't multiply values. Key takeaways: * * - **Polynomial** is an array of coefficients: `f(x) = sum(coeff[i] * basis[i](x))` * - **Basis** is array of functions * - **Monominal** is Polynomial where `basis[i](x) == x**i` (powers) * - **Array size** is domain size * - **Lattice** is matrix (Polynomial of Polynomials) */ export function poly<T>( field: IField<T>, roots: RootsOfUnity, create?: undefined, fft?: FFTMethods<T>, length?: number ): PolyFn<T[], T>; export function poly<T, P extends Polynomial<T>>( field: IField<T>, roots: RootsOfUnity, create: CreatePolyFn<P, T>, fft?: FFTMethods<T>, length?: number ): PolyFn<P, T>; export function poly<T, P extends Polynomial<T>>( field: IField<T>, roots: RootsOfUnity, create?: CreatePolyFn<P, T>, fft?: FFTMethods<T>, length?: number ): PolyFn<any, T> { const F = field; const _create = create || (((len: number, elm?: T): Polynomial<T> => new Array(len).fill(elm ?? F.ZERO)) as CreatePolyFn< P, T >); const isPoly = (x: any): x is P => Array.isArray(x) || ArrayBuffer.isView(x); const checkLength = (...lst: P[]): number => { if (!lst.length) return 0; for (const i of lst) if (!isPoly(i)) throw new Error('poly: not polynomial: ' + i); const L = lst[0].length; for (let i = 1; i < lst.length; i++) if (lst[i].length !== L) throw new Error(`poly: mismatched lengths ${L} vs ${lst[i].length}`); if (length !== undefined && L !== length) throw new Error(`poly: expected fixed length ${length}, got ${L}`); return L; }; function findOmegaIndex(x: T, n: number, brp = false): number { const bits = log2(n); const omega = brp ? roots.brp(bits) : roots.roots(bits); for (let i = 0; i < n; i++) if (F.eql(x, omega[i] as T)) return i; return -1; } // TODO: mutating versions for mlkem/mldsa return { roots, create: _create, length, extend: (a: P, len: number): P => { checkLength(a); const out = _create(len, F.ZERO); for (let i = 0; i < a.length; i++) out[i] = a[i]; return out; }, degree: (a: P): number => { checkLength(a); for (let i = a.length - 1; i >= 0; i--) if (!F.is0(a[i])) return i; return -1; }, add: (a: P, b: P): P => { const len = checkLength(a, b); const out = _create(len); for (let i = 0; i < len; i++) out[i] = F.add(a[i], b[i]); return out; }, sub: (a: P, b: P): P => { const len = checkLength(a, b); const out = _create(len); for (let i = 0; i < len; i++) out[i] = F.sub(a[i], b[i]); return out; }, dot: (a: P, b: P): P => { const len = checkLength(a, b); const out = _create(len); for (let i = 0; i < len; i++) out[i] = F.mul(a[i], b[i]); return out; }, mul: (a: P, b: P | T): P => { if (isPoly(b)) { const len = checkLength(a, b); if (fft) { const A = fft.direct(a, false, true); const B = fft.direct(b, false, true); for (let i = 0; i < A.length; i++) A[i] = F.mul(A[i], B[i]); return fft.inverse(A, true, false) as P; } else { // NOTE: this is quadratic and mostly for compat tests with FFT const res = _create(len); for (let i = 0; i < len; i++) { for (let j = 0; j < len; j++) { const k = (i + j) % len; // wrap mod length res[k] = F.add(res[k], F.mul(a[i], b[j])); } } return res; } } else { const out = _create(checkLength(a)); for (let i = 0; i < out.length; i++) out[i] = F.mul(a[i], b); return out; } }, convolve(a: P, b: P): P { const len = nextPowerOfTwo(a.length + b.length - 1); return this.mul(this.extend(a, len), this.extend(b, len)); }, shift(p: P, factor: bigint): P { const out = _create(checkLength(p)); out[0] = p[0]; for (let i = 1, power = F.ONE; i < p.length; i++) { power = F.mul(power, factor); out[i] = F.mul(p[i], power); } return out; }, clone: (a: P): P => { checkLength(a); const out = _create(a.length); for (let i = 0; i < a.length; i++) out[i] = a[i]; return out; }, eval: (a: P, basis: P): T => { checkLength(a); let acc = F.ZERO; for (let i = 0; i < a.length; i++) acc = F.add(acc, F.mul(a[i], basis[i])); return acc; }, monomial: { basis: (x: T, n: number): P => { const out = _create(n); let pow = F.ONE; for (let i = 0; i < n; i++) { out[i] = pow; pow = F.mul(pow, x); } return out; }, eval: (a: P, x: T): T => { checkLength(a); // Same as eval(a, monomialBasis(x, a.length)), but it is faster this way let acc = F.ZERO; for (let i = a.length - 1; i >= 0; i--) acc = F.add(F.mul(acc, x), a[i]); return acc; }, }, lagrange: { basis: (x: T, n: number, brp = false, weights?: P): P => { const bits = log2(n); const cache = weights || brp ? roots.brp(bits) : roots.roots(bits); // [ω⁰, ω¹, ..., ωⁿ⁻¹] const out = _create(n); // Fast Kronecker-δ shortcut const idx = findOmegaIndex(x, n, brp); if (idx !== -1) { out[idx] = F.ONE; return out; } const tm = F.pow(x, BigInt(n)); const c = F.mul(F.sub(tm, F.ONE), F.inv(BigInt(n) as T)); // c = (xⁿ - 1)/n const denom = _create(n); for (let i = 0; i < n; i++) denom[i] = F.sub(x, cache[i] as T); const inv = F.invertBatch(denom as any as T[]); for (let i = 0; i < n; i++) out[i] = F.mul(c, F.mul(cache[i] as T, inv[i])); return out; }, eval(a: P, x: T, brp = false): T { checkLength(a); const idx = findOmegaIndex(x, a.length, brp); if (idx !== -1) return a[idx]; // fast path const L = this.basis(x, a.length, brp); // Lᵢ(x) let acc = F.ZERO; for (let i = 0; i < a.length; i++) if (!F.is0(a[i])) acc = F.add(acc, F.mul(a[i], L[i])); return acc; }, }, vanishing(roots: P): P { checkLength(roots); const out = _create(roots.length + 1, F.ZERO); out[0] = F.ONE; for (const r of roots) { const neg = F.neg(r); for (let j = out.length - 1; j > 0; j--) out[j] = F.add(F.mul(out[j], neg), out[j - 1]); out[0] = F.mul(out[0], neg); } return out; }, }; }