@noble/curves
Version:
Audited & minimal JS implementation of elliptic curve cryptography
790 lines (709 loc) • 26.8 kB
text/typescript
/**
* Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y².
* For design rationale of types / exports, see weierstrass module documentation.
* Untwisted Edwards curves exist, but they aren't used in real-world protocols.
* @module
*/
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import {
abool,
abytes,
aInRange,
bytesToHex,
bytesToNumberLE,
concatBytes,
copyBytes,
hexToBytes,
isBytes,
memoized,
notImplemented,
validateObject,
randomBytes as wcRandomBytes,
type FHash,
type Signer,
} from '../utils.ts';
import {
createCurveFields,
createKeygen,
normalizeZ,
wNAF,
type AffinePoint,
type CurveLengths,
type CurvePoint,
type CurvePointCons,
} from './curve.ts';
import { type IField } from './modular.ts';
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8);
/** Instance of Extended Point with coordinates in X, Y, Z, T. */
export interface EdwardsPoint extends CurvePoint<bigint, EdwardsPoint> {
/** extended X coordinate. Different from affine x. */
readonly X: bigint;
/** extended Y coordinate. Different from affine y. */
readonly Y: bigint;
/** extended Z coordinate */
readonly Z: bigint;
/** extended T coordinate */
readonly T: bigint;
}
/** Static methods of Extended Point with coordinates in X, Y, Z, T. */
export interface EdwardsPointCons extends CurvePointCons<EdwardsPoint> {
new (X: bigint, Y: bigint, Z: bigint, T: bigint): EdwardsPoint;
CURVE(): EdwardsOpts;
fromBytes(bytes: Uint8Array, zip215?: boolean): EdwardsPoint;
fromHex(hex: string, zip215?: boolean): EdwardsPoint;
}
/**
* Twisted Edwards curve options.
*
* * a: formula param
* * d: formula param
* * p: prime characteristic (order) of finite field, in which arithmetics is done
* * n: order of prime subgroup a.k.a total amount of valid curve points
* * h: cofactor. h*n is group order; n is subgroup order
* * Gx: x coordinate of generator point a.k.a. base point
* * Gy: y coordinate of generator point
*/
export type EdwardsOpts = Readonly<{
p: bigint;
n: bigint;
h: bigint;
a: bigint;
d: bigint;
Gx: bigint;
Gy: bigint;
}>;
/**
* Extra curve options for Twisted Edwards.
*
* * Fp: redefined Field over curve.p
* * Fn: redefined Field over curve.n
* * uvRatio: helper function for decompression, calculating √(u/v)
*/
export type EdwardsExtraOpts = Partial<{
Fp: IField<bigint>;
Fn: IField<bigint>;
FpFnLE: boolean;
uvRatio: (u: bigint, v: bigint) => { isValid: boolean; value: bigint };
}>;
/**
* EdDSA (Edwards Digital Signature algorithm) options.
*
* * hash: hash function used to hash secret keys and messages
* * adjustScalarBytes: clears bits to get valid field element
* * domain: Used for hashing
* * mapToCurve: for hash-to-curve standard
* * prehash: RFC 8032 pre-hashing of messages to sign() / verify()
* * randomBytes: function generating random bytes, used for randomSecretKey
*/
export type EdDSAOpts = Partial<{
adjustScalarBytes: (bytes: Uint8Array) => Uint8Array;
domain: (data: Uint8Array, ctx: Uint8Array, phflag: boolean) => Uint8Array;
mapToCurve: (scalar: bigint[]) => AffinePoint<bigint>;
prehash: FHash;
randomBytes: (bytesLength?: number) => Uint8Array;
}>;
/**
* EdDSA (Edwards Digital Signature algorithm) interface.
*
* Allows to create and verify signatures, create public and secret keys.
*/
export interface EdDSA {
keygen: (seed?: Uint8Array) => { secretKey: Uint8Array; publicKey: Uint8Array };
getPublicKey: (secretKey: Uint8Array) => Uint8Array;
sign: (
message: Uint8Array,
secretKey: Uint8Array,
options?: { context?: Uint8Array }
) => Uint8Array;
verify: (
sig: Uint8Array,
message: Uint8Array,
publicKey: Uint8Array,
options?: { context?: Uint8Array; zip215: boolean }
) => boolean;
Point: EdwardsPointCons;
utils: {
randomSecretKey: (seed?: Uint8Array) => Uint8Array;
isValidSecretKey: (secretKey: Uint8Array) => boolean;
isValidPublicKey: (publicKey: Uint8Array, zip215?: boolean) => boolean;
/**
* Converts ed public key to x public key.
*
* There is NO `fromMontgomery`:
* - There are 2 valid ed25519 points for every x25519, with flipped coordinate
* - Sometimes there are 0 valid ed25519 points, because x25519 *additionally*
* accepts inputs on the quadratic twist, which can't be moved to ed25519
*
* @example
* ```js
* const someonesPub_ed = ed25519.getPublicKey(ed25519.utils.randomSecretKey());
* const someonesPub = ed25519.utils.toMontgomery(someonesPub);
* const aPriv = x25519.utils.randomSecretKey();
* const shared = x25519.getSharedSecret(aPriv, someonesPub)
* ```
*/
toMontgomery: (publicKey: Uint8Array) => Uint8Array;
/**
* Converts ed secret key to x secret key.
* @example
* ```js
* const someonesPub = x25519.getPublicKey(x25519.utils.randomSecretKey());
* const aPriv_ed = ed25519.utils.randomSecretKey();
* const aPriv = ed25519.utils.toMontgomerySecret(aPriv_ed);
* const shared = x25519.getSharedSecret(aPriv, someonesPub)
* ```
*/
toMontgomerySecret: (secretKey: Uint8Array) => Uint8Array;
getExtendedPublicKey: (key: Uint8Array) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: EdwardsPoint;
pointBytes: Uint8Array;
};
};
lengths: CurveLengths;
}
function isEdValidXY(Fp: IField<bigint>, CURVE: EdwardsOpts, x: bigint, y: bigint): boolean {
const x2 = Fp.sqr(x);
const y2 = Fp.sqr(y);
const left = Fp.add(Fp.mul(CURVE.a, x2), y2);
const right = Fp.add(Fp.ONE, Fp.mul(CURVE.d, Fp.mul(x2, y2)));
return Fp.eql(left, right);
}
export function edwards(params: EdwardsOpts, extraOpts: EdwardsExtraOpts = {}): EdwardsPointCons {
const validated = createCurveFields('edwards', params, extraOpts, extraOpts.FpFnLE);
const { Fp, Fn } = validated;
let CURVE = validated.CURVE as EdwardsOpts;
const { h: cofactor } = CURVE;
validateObject(extraOpts, {}, { uvRatio: 'function' });
// Important:
// There are some places where Fp.BYTES is used instead of nByteLength.
// So far, everything has been tested with curves of Fp.BYTES == nByteLength.
// TODO: test and find curves which behave otherwise.
const MASK = _2n << (BigInt(Fn.BYTES * 8) - _1n);
const modP = (n: bigint) => Fp.create(n); // Function overrides
// sqrt(u/v)
const uvRatio =
extraOpts.uvRatio ||
((u: bigint, v: bigint) => {
try {
return { isValid: true, value: Fp.sqrt(Fp.div(u, v)) };
} catch (e) {
return { isValid: false, value: _0n };
}
});
// Validate whether the passed curve params are valid.
// equation ax² + y² = 1 + dx²y² should work for generator point.
if (!isEdValidXY(Fp, CURVE, CURVE.Gx, CURVE.Gy))
throw new Error('bad curve params: generator point');
/**
* Asserts coordinate is valid: 0 <= n < MASK.
* Coordinates >= Fp.ORDER are allowed for zip215.
*/
function acoord(title: string, n: bigint, banZero = false) {
const min = banZero ? _1n : _0n;
aInRange('coordinate ' + title, n, min, MASK);
return n;
}
function aedpoint(other: unknown) {
if (!(other instanceof Point)) throw new Error('EdwardsPoint expected');
}
// Converts Extended point to default (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
const toAffineMemo = memoized((p: Point, iz?: bigint): AffinePoint<bigint> => {
const { X, Y, Z } = p;
const is0 = p.is0();
if (iz == null) iz = is0 ? _8n : (Fp.inv(Z) as bigint); // 8 was chosen arbitrarily
const x = modP(X * iz);
const y = modP(Y * iz);
const zz = Fp.mul(Z, iz);
if (is0) return { x: _0n, y: _1n };
if (zz !== _1n) throw new Error('invZ was invalid');
return { x, y };
});
const assertValidMemo = memoized((p: Point) => {
const { a, d } = CURVE;
if (p.is0()) throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
// Equation in affine coordinates: ax² + y² = 1 + dx²y²
// Equation in projective coordinates (X/Z, Y/Z, Z): (aX² + Y²)Z² = Z⁴ + dX²Y²
const { X, Y, Z, T } = p;
const X2 = modP(X * X); // X²
const Y2 = modP(Y * Y); // Y²
const Z2 = modP(Z * Z); // Z²
const Z4 = modP(Z2 * Z2); // Z⁴
const aX2 = modP(X2 * a); // aX²
const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
if (left !== right) throw new Error('bad point: equation left != right (1)');
// In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
const XY = modP(X * Y);
const ZT = modP(Z * T);
if (XY !== ZT) throw new Error('bad point: equation left != right (2)');
return true;
});
// Extended Point works in extended coordinates: (X, Y, Z, T) ∋ (x=X/Z, y=Y/Z, T=xy).
// https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
class Point implements EdwardsPoint {
// base / generator point
static readonly BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy));
// zero / infinity / identity point
static readonly ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0
// math field
static readonly Fp = Fp;
// scalar field
static readonly Fn = Fn;
readonly X: bigint;
readonly Y: bigint;
readonly Z: bigint;
readonly T: bigint;
constructor(X: bigint, Y: bigint, Z: bigint, T: bigint) {
this.X = acoord('x', X);
this.Y = acoord('y', Y);
this.Z = acoord('z', Z, true);
this.T = acoord('t', T);
Object.freeze(this);
}
static CURVE(): EdwardsOpts {
return CURVE;
}
static fromAffine(p: AffinePoint<bigint>): Point {
if (p instanceof Point) throw new Error('extended point not allowed');
const { x, y } = p || {};
acoord('x', x);
acoord('y', y);
return new Point(x, y, _1n, modP(x * y));
}
// Uses algo from RFC8032 5.1.3.
static fromBytes(bytes: Uint8Array, zip215 = false): Point {
const len = Fp.BYTES;
const { a, d } = CURVE;
bytes = copyBytes(abytes(bytes, len, 'point'));
abool(zip215, 'zip215');
const normed = copyBytes(bytes); // copy again, we'll manipulate it
const lastByte = bytes[len - 1]; // select last byte
normed[len - 1] = lastByte & ~0x80; // clear last bit
const y = bytesToNumberLE(normed);
// zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
// RFC8032 prohibits >= p, but ZIP215 doesn't
// zip215=true: 0 <= y < MASK (2^256 for ed25519)
// zip215=false: 0 <= y < P (2^255-19 for ed25519)
const max = zip215 ? MASK : Fp.ORDER;
aInRange('point.y', y, _0n, max);
// Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
// ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
const y2 = modP(y * y); // denominator is always non-0 mod p.
const u = modP(y2 - _1n); // u = y² - 1
const v = modP(d * y2 - a); // v = d y² + 1.
let { isValid, value: x } = uvRatio(u, v); // √(u/v)
if (!isValid) throw new Error('bad point: invalid y coordinate');
const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper
const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
if (!zip215 && x === _0n && isLastByteOdd)
// if x=0 and x_0 = 1, fail
throw new Error('bad point: x=0 and x_0=1');
if (isLastByteOdd !== isXOdd) x = modP(-x); // if x_0 != x mod 2, set x = p-x
return Point.fromAffine({ x, y });
}
static fromHex(hex: string, zip215 = false): Point {
return Point.fromBytes(hexToBytes(hex), zip215);
}
get x(): bigint {
return this.toAffine().x;
}
get y(): bigint {
return this.toAffine().y;
}
precompute(windowSize: number = 8, isLazy = true) {
wnaf.createCache(this, windowSize);
if (!isLazy) this.multiply(_2n); // random number
return this;
}
// Useful in fromAffine() - not for fromBytes(), which always created valid points.
assertValidity(): void {
assertValidMemo(this);
}
// Compare one point to another.
equals(other: Point): boolean {
aedpoint(other);
const { X: X1, Y: Y1, Z: Z1 } = this;
const { X: X2, Y: Y2, Z: Z2 } = other;
const X1Z2 = modP(X1 * Z2);
const X2Z1 = modP(X2 * Z1);
const Y1Z2 = modP(Y1 * Z2);
const Y2Z1 = modP(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
is0(): boolean {
return this.equals(Point.ZERO);
}
negate(): Point {
// Flips point sign to a negative one (-x, y in affine coords)
return new Point(modP(-this.X), this.Y, this.Z, modP(-this.T));
}
// Fast algo for doubling Extended Point.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
// Cost: 4M + 4S + 1*a + 6add + 1*2.
double(): Point {
const { a } = CURVE;
const { X: X1, Y: Y1, Z: Z1 } = this;
const A = modP(X1 * X1); // A = X12
const B = modP(Y1 * Y1); // B = Y12
const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12
const D = modP(a * A); // D = a*A
const x1y1 = X1 + Y1;
const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
const G = D + B; // G = D+B
const F = G - C; // F = G-C
const H = D - B; // H = D-B
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
// Fast algo for adding 2 Extended Points.
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
// Cost: 9M + 1*a + 1*d + 7add.
add(other: Point) {
aedpoint(other);
const { a, d } = CURVE;
const { X: X1, Y: Y1, Z: Z1, T: T1 } = this;
const { X: X2, Y: Y2, Z: Z2, T: T2 } = other;
const A = modP(X1 * X2); // A = X1*X2
const B = modP(Y1 * Y2); // B = Y1*Y2
const C = modP(T1 * d * T2); // C = T1*d*T2
const D = modP(Z1 * Z2); // D = Z1*Z2
const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
const F = D - C; // F = D-C
const G = D + C; // G = D+C
const H = modP(B - a * A); // H = B-a*A
const X3 = modP(E * F); // X3 = E*F
const Y3 = modP(G * H); // Y3 = G*H
const T3 = modP(E * H); // T3 = E*H
const Z3 = modP(F * G); // Z3 = F*G
return new Point(X3, Y3, Z3, T3);
}
subtract(other: Point): Point {
return this.add(other.negate());
}
// Constant-time multiplication.
multiply(scalar: bigint): Point {
// 1 <= scalar < L
if (!Fn.isValidNot0(scalar)) throw new Error('invalid scalar: expected 1 <= sc < curve.n');
const { p, f } = wnaf.cached(this, scalar, (p) => normalizeZ(Point, p));
return normalizeZ(Point, [p, f])[0];
}
// Non-constant-time multiplication. Uses double-and-add algorithm.
// It's faster, but should only be used when you don't care about
// an exposed private key e.g. sig verification.
// Does NOT allow scalars higher than CURVE.n.
// Accepts optional accumulator to merge with multiply (important for sparse scalars)
multiplyUnsafe(scalar: bigint, acc = Point.ZERO): Point {
// 0 <= scalar < L
if (!Fn.isValid(scalar)) throw new Error('invalid scalar: expected 0 <= sc < curve.n');
if (scalar === _0n) return Point.ZERO;
if (this.is0() || scalar === _1n) return this;
return wnaf.unsafe(this, scalar, (p) => normalizeZ(Point, p), acc);
}
// Checks if point is of small order.
// If you add something to small order point, you will have "dirty"
// point with torsion component.
// Multiplies point by cofactor and checks if the result is 0.
isSmallOrder(): boolean {
return this.multiplyUnsafe(cofactor).is0();
}
// Multiplies point by curve order and checks if the result is 0.
// Returns `false` is the point is dirty.
isTorsionFree(): boolean {
return wnaf.unsafe(this, CURVE.n).is0();
}
// Converts Extended point to default (x, y) coordinates.
// Can accept precomputed Z^-1 - for example, from invertBatch.
toAffine(invertedZ?: bigint): AffinePoint<bigint> {
return toAffineMemo(this, invertedZ);
}
clearCofactor(): Point {
if (cofactor === _1n) return this;
return this.multiplyUnsafe(cofactor);
}
toBytes(): Uint8Array {
const { x, y } = this.toAffine();
// Fp.toBytes() allows non-canonical encoding of y (>= p).
const bytes = Fp.toBytes(y);
// Each y has 2 valid points: (x, y), (x,-y).
// When compressing, it's enough to store y and use the last byte to encode sign of x
bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0;
return bytes;
}
toHex(): string {
return bytesToHex(this.toBytes());
}
toString() {
return `<Point ${this.is0() ? 'ZERO' : this.toHex()}>`;
}
}
const wnaf = new wNAF(Point, Fn.BITS);
Point.BASE.precompute(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
return Point;
}
/**
* Base class for prime-order points like Ristretto255 and Decaf448.
* These points eliminate cofactor issues by representing equivalence classes
* of Edwards curve points.
*/
export abstract class PrimeEdwardsPoint<T extends PrimeEdwardsPoint<T>>
implements CurvePoint<bigint, T>
{
static BASE: PrimeEdwardsPoint<any>;
static ZERO: PrimeEdwardsPoint<any>;
static Fp: IField<bigint>;
static Fn: IField<bigint>;
protected readonly ep: EdwardsPoint;
constructor(ep: EdwardsPoint) {
this.ep = ep;
}
// Abstract methods that must be implemented by subclasses
abstract toBytes(): Uint8Array;
abstract equals(other: T): boolean;
// Static methods that must be implemented by subclasses
static fromBytes(_bytes: Uint8Array): any {
notImplemented();
}
static fromHex(_hex: string): any {
notImplemented();
}
get x(): bigint {
return this.toAffine().x;
}
get y(): bigint {
return this.toAffine().y;
}
// Common implementations
clearCofactor(): T {
// no-op for prime-order groups
return this as any;
}
assertValidity(): void {
this.ep.assertValidity();
}
toAffine(invertedZ?: bigint): AffinePoint<bigint> {
return this.ep.toAffine(invertedZ);
}
toHex(): string {
return bytesToHex(this.toBytes());
}
toString(): string {
return this.toHex();
}
isTorsionFree(): boolean {
return true;
}
isSmallOrder(): boolean {
return false;
}
add(other: T): T {
this.assertSame(other);
return this.init(this.ep.add(other.ep));
}
subtract(other: T): T {
this.assertSame(other);
return this.init(this.ep.subtract(other.ep));
}
multiply(scalar: bigint): T {
return this.init(this.ep.multiply(scalar));
}
multiplyUnsafe(scalar: bigint): T {
return this.init(this.ep.multiplyUnsafe(scalar));
}
double(): T {
return this.init(this.ep.double());
}
negate(): T {
return this.init(this.ep.negate());
}
precompute(windowSize?: number, isLazy?: boolean): T {
return this.init(this.ep.precompute(windowSize, isLazy));
}
// Helper methods
abstract is0(): boolean;
protected abstract assertSame(other: T): void;
protected abstract init(ep: EdwardsPoint): T;
}
/**
* Initializes EdDSA signatures over given Edwards curve.
*/
export function eddsa(Point: EdwardsPointCons, cHash: FHash, eddsaOpts: EdDSAOpts = {}): EdDSA {
if (typeof cHash !== 'function') throw new Error('"hash" function param is required');
validateObject(
eddsaOpts,
{},
{
adjustScalarBytes: 'function',
randomBytes: 'function',
domain: 'function',
prehash: 'function',
mapToCurve: 'function',
}
);
const { prehash } = eddsaOpts;
const { BASE, Fp, Fn } = Point;
const randomBytes = eddsaOpts.randomBytes || wcRandomBytes;
const adjustScalarBytes = eddsaOpts.adjustScalarBytes || ((bytes: Uint8Array) => bytes);
const domain =
eddsaOpts.domain ||
((data: Uint8Array, ctx: Uint8Array, phflag: boolean) => {
abool(phflag, 'phflag');
if (ctx.length || phflag) throw new Error('Contexts/pre-hash are not supported');
return data;
}); // NOOP
// Little-endian SHA512 with modulo n
function modN_LE(hash: Uint8Array): bigint {
return Fn.create(bytesToNumberLE(hash)); // Not Fn.fromBytes: it has length limit
}
// Get the hashed private scalar per RFC8032 5.1.5
function getPrivateScalar(key: Uint8Array) {
const len = lengths.secretKey;
abytes(key, lengths.secretKey, 'secretKey');
// Hash private key with curve's hash function to produce uniformingly random input
// Check byte lengths: ensure(64, h(ensure(32, key)))
const hashed = abytes(cHash(key), 2 * len, 'hashedSecretKey');
const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
const scalar = modN_LE(head); // The actual private scalar
return { head, prefix, scalar };
}
/** Convenience method that creates public key from scalar. RFC8032 5.1.5 */
function getExtendedPublicKey(secretKey: Uint8Array) {
const { head, prefix, scalar } = getPrivateScalar(secretKey);
const point = BASE.multiply(scalar); // Point on Edwards curve aka public key
const pointBytes = point.toBytes();
return { head, prefix, scalar, point, pointBytes };
}
/** Calculates EdDSA pub key. RFC8032 5.1.5. */
function getPublicKey(secretKey: Uint8Array): Uint8Array {
return getExtendedPublicKey(secretKey).pointBytes;
}
// int('LE', SHA512(dom2(F, C) || msgs)) mod N
function hashDomainToScalar(context: Uint8Array = Uint8Array.of(), ...msgs: Uint8Array[]) {
const msg = concatBytes(...msgs);
return modN_LE(cHash(domain(msg, abytes(context, undefined, 'context'), !!prehash)));
}
/** Signs message with secret key. RFC8032 5.1.6 */
function sign(
msg: Uint8Array,
secretKey: Uint8Array,
options: { context?: Uint8Array } = {}
): Uint8Array {
msg = abytes(msg, undefined, 'message');
if (prehash) msg = prehash(msg); // for ed25519ph etc.
const { prefix, scalar, pointBytes } = getExtendedPublicKey(secretKey);
const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
const R = BASE.multiply(r).toBytes(); // R = rG
const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
const s = Fn.create(r + k * scalar); // S = (r + k * s) mod L
if (!Fn.isValid(s)) throw new Error('sign failed: invalid s'); // 0 <= s < L
const rs = concatBytes(R, Fn.toBytes(s));
return abytes(rs, lengths.signature, 'result');
}
// verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
const verifyOpts: { context?: Uint8Array; zip215?: boolean } = { zip215: true };
/**
* Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
* An extended group equation is checked.
*/
function verify(
sig: Uint8Array,
msg: Uint8Array,
publicKey: Uint8Array,
options = verifyOpts
): boolean {
const { context, zip215 } = options;
const len = lengths.signature;
sig = abytes(sig, len, 'signature');
msg = abytes(msg, undefined, 'message');
publicKey = abytes(publicKey, lengths.publicKey, 'publicKey');
if (zip215 !== undefined) abool(zip215, 'zip215');
if (prehash) msg = prehash(msg); // for ed25519ph, etc
const mid = len / 2;
const r = sig.subarray(0, mid);
const s = bytesToNumberLE(sig.subarray(mid, len));
let A, R, SB;
try {
// zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
// zip215=true: 0 <= y < MASK (2^256 for ed25519)
// zip215=false: 0 <= y < P (2^255-19 for ed25519)
A = Point.fromBytes(publicKey, zip215);
R = Point.fromBytes(r, zip215);
SB = BASE.multiplyUnsafe(s); // 0 <= s < l is done inside
} catch (error) {
return false;
}
if (!zip215 && A.isSmallOrder()) return false; // zip215 allows public keys of small order
const k = hashDomainToScalar(context, R.toBytes(), A.toBytes(), msg);
const RkA = R.add(A.multiplyUnsafe(k));
// Extended group equation
// [8][S]B = [8]R + [8][k]A'
return RkA.subtract(SB).clearCofactor().is0();
}
const _size = Fp.BYTES; // 32 for ed25519, 57 for ed448
const lengths = {
secretKey: _size,
publicKey: _size,
signature: 2 * _size,
seed: _size,
};
function randomSecretKey(seed = randomBytes(lengths.seed)): Uint8Array {
return abytes(seed, lengths.seed, 'seed');
}
function isValidSecretKey(key: Uint8Array): boolean {
return isBytes(key) && key.length === Fn.BYTES;
}
function isValidPublicKey(key: Uint8Array, zip215?: boolean): boolean {
try {
return !!Point.fromBytes(key, zip215);
} catch (error) {
return false;
}
}
const utils = {
getExtendedPublicKey,
randomSecretKey,
isValidSecretKey,
isValidPublicKey,
/**
* Converts ed public key to x public key. Uses formula:
* - ed25519:
* - `(u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)`
* - `(x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))`
* - ed448:
* - `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)`
* - `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))`
*/
toMontgomery(publicKey: Uint8Array): Uint8Array {
const { y } = Point.fromBytes(publicKey);
const size = lengths.publicKey;
const is25519 = size === 32;
if (!is25519 && size !== 57) throw new Error('only defined for 25519 and 448');
const u = is25519 ? Fp.div(_1n + y, _1n - y) : Fp.div(y - _1n, y + _1n);
return Fp.toBytes(u);
},
toMontgomerySecret(secretKey: Uint8Array): Uint8Array {
const size = lengths.secretKey;
abytes(secretKey, size);
const hashed = cHash(secretKey.subarray(0, size));
return adjustScalarBytes(hashed).subarray(0, size);
},
};
return Object.freeze({
keygen: createKeygen(randomSecretKey, getPublicKey),
getPublicKey,
sign,
verify,
utils,
Point,
lengths,
}) satisfies Signer;
}