UNPKG

@noble/curves

Version:

Audited & minimal JS implementation of elliptic curve cryptography

159 lines 6.61 kB
export declare function mod(a: bigint, b: bigint): bigint; /** * Efficiently raise num to power and do modular division. * Unsafe in some contexts: uses ladder, so can expose bigint bits. * @example * pow(2n, 6n, 11n) // 64n % 11n == 9n */ export declare function pow(num: bigint, power: bigint, modulo: bigint): bigint; /** Does `x^(2^power)` mod p. `pow2(30, 4)` == `30^(2^4)` */ export declare function pow2(x: bigint, power: bigint, modulo: bigint): bigint; /** * Inverses number over modulo. * Implemented using [Euclidean GCD](https://brilliant.org/wiki/extended-euclidean-algorithm/). */ export declare function invert(number: bigint, modulo: bigint): bigint; /** * Tonelli-Shanks square root search algorithm. * 1. https://eprint.iacr.org/2012/685.pdf (page 12) * 2. Square Roots from 1; 24, 51, 10 to Dan Shanks * @param P field order * @returns function that takes field Fp (created from P) and number n */ export declare function tonelliShanks(P: bigint): <T>(Fp: IField<T>, n: T) => T; /** * Square root for a finite field. Will try optimized versions first: * * 1. P ≡ 3 (mod 4) * 2. P ≡ 5 (mod 8) * 3. P ≡ 9 (mod 16) * 4. Tonelli-Shanks algorithm * * Different algorithms can give different roots, it is up to user to decide which one they want. * For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve). */ export declare function FpSqrt(P: bigint): <T>(Fp: IField<T>, n: T) => T; export declare const isNegativeLE: (num: bigint, modulo: bigint) => boolean; /** Field is not always over prime: for example, Fp2 has ORDER(q)=p^m. */ export interface IField<T> { ORDER: bigint; BYTES: number; BITS: number; isLE: boolean; ZERO: T; ONE: T; create: (num: T) => T; isValid: (num: T) => boolean; is0: (num: T) => boolean; isValidNot0: (num: T) => boolean; neg(num: T): T; inv(num: T): T; sqrt(num: T): T; sqr(num: T): T; eql(lhs: T, rhs: T): boolean; add(lhs: T, rhs: T): T; sub(lhs: T, rhs: T): T; mul(lhs: T, rhs: T | bigint): T; pow(lhs: T, power: bigint): T; div(lhs: T, rhs: T | bigint): T; addN(lhs: T, rhs: T): T; subN(lhs: T, rhs: T): T; mulN(lhs: T, rhs: T | bigint): T; sqrN(num: T): T; isOdd?(num: T): boolean; invertBatch: (lst: T[]) => T[]; toBytes(num: T): Uint8Array; fromBytes(bytes: Uint8Array, skipValidation?: boolean): T; cmov(a: T, b: T, c: boolean): T; } export declare function validateField<T>(field: IField<T>): IField<T>; /** * Same as `pow` but for Fp: non-constant-time. * Unsafe in some contexts: uses ladder, so can expose bigint bits. */ export declare function FpPow<T>(Fp: IField<T>, num: T, power: bigint): T; /** * Efficiently invert an array of Field elements. * Exception-free. Will return `undefined` for 0 elements. * @param passZero map 0 to 0 (instead of undefined) */ export declare function FpInvertBatch<T>(Fp: IField<T>, nums: T[], passZero?: boolean): T[]; export declare function FpDiv<T>(Fp: IField<T>, lhs: T, rhs: T | bigint): T; /** * Legendre symbol. * Legendre constant is used to calculate Legendre symbol (a | p) * which denotes the value of a^((p-1)/2) (mod p). * * * (a | p) ≡ 1 if a is a square (mod p), quadratic residue * * (a | p) ≡ -1 if a is not a square (mod p), quadratic non residue * * (a | p) ≡ 0 if a ≡ 0 (mod p) */ export declare function FpLegendre<T>(Fp: IField<T>, n: T): -1 | 0 | 1; export declare function FpIsSquare<T>(Fp: IField<T>, n: T): boolean; export type NLength = { nByteLength: number; nBitLength: number; }; export declare function nLength(n: bigint, nBitLength?: number): NLength; type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>; type SqrtFn = (n: bigint) => bigint; type FieldOpts = Partial<{ isLE: boolean; BITS: number; sqrt: SqrtFn; allowedLengths?: readonly number[]; modFromBytes: boolean; }>; /** * Creates a finite field. Major performance optimizations: * * 1. Denormalized operations like mulN instead of mul. * * 2. Identical object shape: never add or remove keys. * * 3. `Object.freeze`. * Fragile: always run a benchmark on a change. * Security note: operations don't check 'isValid' for all elements for performance reasons, * it is caller responsibility to check this. * This is low-level code, please make sure you know what you're doing. * * Note about field properties: * * CHARACTERISTIC p = prime number, number of elements in main subgroup. * * ORDER q = similar to cofactor in curves, may be composite `q = p^m`. * * @param ORDER field order, probably prime, or could be composite * @param bitLen how many bits the field consumes * @param isLE (default: false) if encoding / decoding should be in little-endian * @param redef optional faster redefinitions of sqrt and other methods */ export declare function Field(ORDER: bigint, opts?: FieldOpts): Readonly<FpField>; export declare function FpSqrtOdd<T>(Fp: IField<T>, elm: T): T; export declare function FpSqrtEven<T>(Fp: IField<T>, elm: T): T; /** * Returns total number of bytes consumed by the field element. * For example, 32 bytes for usual 256-bit weierstrass curve. * @param fieldOrder number of field elements, usually CURVE.n * @returns byte length of field */ export declare function getFieldBytesLength(fieldOrder: bigint): number; /** * Returns minimal amount of bytes that can be safely reduced * by field order. * Should be 2^-128 for 128-bit curve such as P256. * @param fieldOrder number of field elements, usually CURVE.n * @returns byte length of target hash */ export declare function getMinHashLength(fieldOrder: bigint): number; /** * "Constant-time" private key generation utility. * Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF * and convert them into private scalar, with the modulo bias being negligible. * Needs at least 48 bytes of input for 32-byte private key. * https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/ * FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final * RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5 * @param hash hash output from SHA3 or a similar function * @param groupOrder size of subgroup - (e.g. secp256k1.Point.Fn.ORDER) * @param isLE interpret hash bytes as LE num * @returns valid private scalar */ export declare function mapHashToField(key: Uint8Array, fieldOrder: bigint, isLE?: boolean): Uint8Array; export {}; //# sourceMappingURL=modular.d.ts.map