UNPKG

@noble/curves

Version:

Audited & minimal JS implementation of elliptic curve cryptography

195 lines 8.36 kB
/** * Methods for elliptic curve multiplication by scalars. * Contains wNAF, pippenger. * @module */ /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ import { type Signer } from '../utils.ts'; import { type IField } from './modular.ts'; export type AffinePoint<T> = { x: T; y: T; } & { Z?: never; }; /** Base interface for all elliptic curve Points. */ export interface CurvePoint<F, P extends CurvePoint<F, P>> { /** Affine x coordinate. Different from projective / extended X coordinate. */ x: F; /** Affine y coordinate. Different from projective / extended Y coordinate. */ y: F; Z?: F; double(): P; negate(): P; add(other: P): P; subtract(other: P): P; equals(other: P): boolean; multiply(scalar: bigint): P; assertValidity(): void; clearCofactor(): P; is0(): boolean; isTorsionFree(): boolean; isSmallOrder(): boolean; multiplyUnsafe(scalar: bigint): P; /** * Massively speeds up `p.multiply(n)` by using precompute tables (caching). See {@link wNAF}. * @param isLazy calculate cache now. Default (true) ensures it's deferred to first `multiply()` */ precompute(windowSize?: number, isLazy?: boolean): P; /** Converts point to 2D xy affine coordinates */ toAffine(invertedZ?: F): AffinePoint<F>; toBytes(): Uint8Array; toHex(): string; } /** Base interface for all elliptic curve Point constructors. */ export interface CurvePointCons<P extends CurvePoint<any, P>> { [Symbol.hasInstance]: (item: unknown) => boolean; BASE: P; ZERO: P; /** Field for basic curve math */ Fp: IField<P_F<P>>; /** Scalar field, for scalars in multiply and others */ Fn: IField<bigint>; /** Creates point from x, y. Does NOT validate if the point is valid. Use `.assertValidity()`. */ fromAffine(p: AffinePoint<P_F<P>>): P; fromBytes(bytes: Uint8Array): P; fromHex(hex: string): P; } /** Returns Fp type from Point (P_F<P> == P.F) */ export type P_F<P extends CurvePoint<any, P>> = P extends CurvePoint<infer F, P> ? F : never; /** Returns Fp type from PointCons (PC_F<PC> == PC.P.F) */ export type PC_F<PC extends CurvePointCons<CurvePoint<any, any>>> = PC['Fp']['ZERO']; /** Returns Point type from PointCons (PC_P<PC> == PC.P) */ export type PC_P<PC extends CurvePointCons<CurvePoint<any, any>>> = PC['ZERO']; export type PC_ANY = CurvePointCons<CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, CurvePoint<any, any>>>>>>>>>>>; export interface CurveLengths { secretKey?: number; publicKey?: number; publicKeyUncompressed?: number; publicKeyHasPrefix?: boolean; signature?: number; seed?: number; } export type Mapper<T> = (i: T[]) => T[]; export declare function negateCt<T extends { negate: () => T; }>(condition: boolean, item: T): T; /** * Takes a bunch of Projective Points but executes only one * inversion on all of them. Inversion is very slow operation, * so this improves performance massively. * Optimization: converts a list of projective points to a list of identical points with Z=1. */ export declare function normalizeZ<P extends CurvePoint<any, P>, PC extends CurvePointCons<P>>(c: PC, points: P[]): P[]; /** * Elliptic curve multiplication of Point by scalar. Fragile. * Table generation takes **30MB of ram and 10ms on high-end CPU**, * but may take much longer on slow devices. Actual generation will happen on * first call of `multiply()`. By default, `BASE` point is precomputed. * * Scalars should always be less than curve order: this should be checked inside of a curve itself. * Creates precomputation tables for fast multiplication: * - private scalar is split by fixed size windows of W bits * - every window point is collected from window's table & added to accumulator * - since windows are different, same point inside tables won't be accessed more than once per calc * - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar) * - +1 window is neccessary for wNAF * - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication * * @todo Research returning 2d JS array of windows, instead of a single window. * This would allow windows to be in different memory locations */ export declare class wNAF<PC extends PC_ANY> { private readonly BASE; private readonly ZERO; private readonly Fn; readonly bits: number; constructor(Point: PC, bits: number); _unsafeLadder(elm: PC_P<PC>, n: bigint, p?: PC_P<PC>): PC_P<PC>; /** * Creates a wNAF precomputation window. Used for caching. * Default window size is set by `utils.precompute()` and is equal to 8. * Number of precomputed points depends on the curve size: * 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where: * - 𝑊 is the window size * - 𝑛 is the bitlength of the curve order. * For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224. * @param point Point instance * @param W window size * @returns precomputed point tables flattened to a single array */ private precomputeWindow; /** * Implements ec multiplication using precomputed tables and w-ary non-adjacent form. * More compact implementation: * https://github.com/paulmillr/noble-secp256k1/blob/47cb1669b6e506ad66b35fe7d76132ae97465da2/index.ts#L502-L541 * @returns real and fake (for const-time) points */ private wNAF; /** * Implements ec unsafe (non const-time) multiplication using precomputed tables and w-ary non-adjacent form. * @param acc accumulator point to add result of multiplication * @returns point */ private wNAFUnsafe; private getPrecomputes; cached(point: PC_P<PC>, scalar: bigint, transform?: Mapper<PC_P<PC>>): { p: PC_P<PC>; f: PC_P<PC>; }; unsafe(point: PC_P<PC>, scalar: bigint, transform?: Mapper<PC_P<PC>>, prev?: PC_P<PC>): PC_P<PC>; createCache(P: PC_P<PC>, W: number): void; hasCache(elm: PC_P<PC>): boolean; } /** * Endomorphism-specific multiplication for Koblitz curves. * Cost: 128 dbl, 0-256 adds. */ export declare function mulEndoUnsafe<P extends CurvePoint<any, P>, PC extends CurvePointCons<P>>(Point: PC, point: P, k1: bigint, k2: bigint): { p1: P; p2: P; }; /** * Pippenger algorithm for multi-scalar multiplication (MSM, Pa + Qb + Rc + ...). * 30x faster vs naive addition on L=4096, 10x faster than precomputes. * For N=254bit, L=1, it does: 1024 ADD + 254 DBL. For L=5: 1536 ADD + 254 DBL. * Algorithmically constant-time (for same L), even when 1 point + scalar, or when scalar = 0. * @param c Curve Point constructor * @param fieldN field over CURVE.N - important that it's not over CURVE.P * @param points array of L curve points * @param scalars array of L scalars (aka secret keys / bigints) */ export declare function pippenger<P extends CurvePoint<any, P>, PC extends CurvePointCons<P>>(c: PC, points: P[], scalars: bigint[]): P; /** * Precomputed multi-scalar multiplication (MSM, Pa + Qb + Rc + ...). * @param c Curve Point constructor * @param fieldN field over CURVE.N - important that it's not over CURVE.P * @param points array of L curve points * @returns function which multiplies points with scaars */ export declare function precomputeMSMUnsafe<P extends CurvePoint<any, P>, PC extends CurvePointCons<P>>(c: PC, points: P[], windowSize: number): (scalars: bigint[]) => P; export type ValidCurveParams<T> = { p: bigint; n: bigint; h: bigint; a: T; b?: T; d?: T; Gx: T; Gy: T; }; export type FpFn<T> = { Fp: IField<T>; Fn: IField<bigint>; }; /** Validates CURVE opts and creates fields */ export declare function createCurveFields<T>(type: 'weierstrass' | 'edwards', CURVE: ValidCurveParams<T>, curveOpts?: Partial<FpFn<T>>, FpFnLE?: boolean): FpFn<T> & { CURVE: ValidCurveParams<T>; }; type KeygenFn = (seed?: Uint8Array, isCompressed?: boolean) => { secretKey: Uint8Array; publicKey: Uint8Array; }; export declare function createKeygen(randomSecretKey: Function, getPublicKey: Signer['getPublicKey']): KeygenFn; export {}; //# sourceMappingURL=curve.d.ts.map