UNPKG

@nepwork/dashboards

Version:

Dashboards for emergencies and monitoring

1,748 lines (1,531 loc) 86.1 kB
// https://d3js.org/d3-geo/ Version 1.9.1. Copyright 2017 Mike Bostock. (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) : typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) : (factory((global.d3 = global.d3 || {}),global.d3)); }(this, (function (exports,d3Array) { 'use strict'; // Adds floating point numbers with twice the normal precision. // Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and // Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3) // 305–363 (1997). // Code adapted from GeographicLib by Charles F. F. Karney, // http://geographiclib.sourceforge.net/ var adder = function() { return new Adder; }; function Adder() { this.reset(); } Adder.prototype = { constructor: Adder, reset: function() { this.s = // rounded value this.t = 0; // exact error }, add: function(y) { add(temp, y, this.t); add(this, temp.s, this.s); if (this.s) this.t += temp.t; else this.s = temp.t; }, valueOf: function() { return this.s; } }; var temp = new Adder; function add(adder, a, b) { var x = adder.s = a + b, bv = x - a, av = x - bv; adder.t = (a - av) + (b - bv); } var epsilon = 1e-6; var epsilon2 = 1e-12; var pi = Math.PI; var halfPi = pi / 2; var quarterPi = pi / 4; var tau = pi * 2; var degrees = 180 / pi; var radians = pi / 180; var abs = Math.abs; var atan = Math.atan; var atan2 = Math.atan2; var cos = Math.cos; var ceil = Math.ceil; var exp = Math.exp; var log = Math.log; var pow = Math.pow; var sin = Math.sin; var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; }; var sqrt = Math.sqrt; var tan = Math.tan; function acos(x) { return x > 1 ? 0 : x < -1 ? pi : Math.acos(x); } function asin(x) { return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x); } function haversin(x) { return (x = sin(x / 2)) * x; } function noop() {} function streamGeometry(geometry, stream) { if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) { streamGeometryType[geometry.type](geometry, stream); } } var streamObjectType = { Feature: function(object, stream) { streamGeometry(object.geometry, stream); }, FeatureCollection: function(object, stream) { var features = object.features, i = -1, n = features.length; while (++i < n) streamGeometry(features[i].geometry, stream); } }; var streamGeometryType = { Sphere: function(object, stream) { stream.sphere(); }, Point: function(object, stream) { object = object.coordinates; stream.point(object[0], object[1], object[2]); }, MultiPoint: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]); }, LineString: function(object, stream) { streamLine(object.coordinates, stream, 0); }, MultiLineString: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamLine(coordinates[i], stream, 0); }, Polygon: function(object, stream) { streamPolygon(object.coordinates, stream); }, MultiPolygon: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamPolygon(coordinates[i], stream); }, GeometryCollection: function(object, stream) { var geometries = object.geometries, i = -1, n = geometries.length; while (++i < n) streamGeometry(geometries[i], stream); } }; function streamLine(coordinates, stream, closed) { var i = -1, n = coordinates.length - closed, coordinate; stream.lineStart(); while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]); stream.lineEnd(); } function streamPolygon(coordinates, stream) { var i = -1, n = coordinates.length; stream.polygonStart(); while (++i < n) streamLine(coordinates[i], stream, 1); stream.polygonEnd(); } var geoStream = function(object, stream) { if (object && streamObjectType.hasOwnProperty(object.type)) { streamObjectType[object.type](object, stream); } else { streamGeometry(object, stream); } }; var areaRingSum = adder(); var areaSum = adder(); var lambda00; var phi00; var lambda0; var cosPhi0; var sinPhi0; var areaStream = { point: noop, lineStart: noop, lineEnd: noop, polygonStart: function() { areaRingSum.reset(); areaStream.lineStart = areaRingStart; areaStream.lineEnd = areaRingEnd; }, polygonEnd: function() { var areaRing = +areaRingSum; areaSum.add(areaRing < 0 ? tau + areaRing : areaRing); this.lineStart = this.lineEnd = this.point = noop; }, sphere: function() { areaSum.add(tau); } }; function areaRingStart() { areaStream.point = areaPointFirst; } function areaRingEnd() { areaPoint(lambda00, phi00); } function areaPointFirst(lambda, phi) { areaStream.point = areaPoint; lambda00 = lambda, phi00 = phi; lambda *= radians, phi *= radians; lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi); } function areaPoint(lambda, phi) { lambda *= radians, phi *= radians; phi = phi / 2 + quarterPi; // half the angular distance from south pole // Spherical excess E for a spherical triangle with vertices: south pole, // previous point, current point. Uses a formula derived from Cagnoli’s // theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2). var dLambda = lambda - lambda0, sdLambda = dLambda >= 0 ? 1 : -1, adLambda = sdLambda * dLambda, cosPhi = cos(phi), sinPhi = sin(phi), k = sinPhi0 * sinPhi, u = cosPhi0 * cosPhi + k * cos(adLambda), v = k * sdLambda * sin(adLambda); areaRingSum.add(atan2(v, u)); // Advance the previous points. lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi; } var area = function(object) { areaSum.reset(); geoStream(object, areaStream); return areaSum * 2; }; function spherical(cartesian) { return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])]; } function cartesian(spherical) { var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi); return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)]; } function cartesianDot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } function cartesianCross(a, b) { return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]]; } // TODO return a function cartesianAddInPlace(a, b) { a[0] += b[0], a[1] += b[1], a[2] += b[2]; } function cartesianScale(vector, k) { return [vector[0] * k, vector[1] * k, vector[2] * k]; } // TODO return d function cartesianNormalizeInPlace(d) { var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); d[0] /= l, d[1] /= l, d[2] /= l; } var lambda0$1; var phi0; var lambda1; var phi1; var lambda2; var lambda00$1; var phi00$1; var p0; var deltaSum = adder(); var ranges; var range$1; var boundsStream = { point: boundsPoint, lineStart: boundsLineStart, lineEnd: boundsLineEnd, polygonStart: function() { boundsStream.point = boundsRingPoint; boundsStream.lineStart = boundsRingStart; boundsStream.lineEnd = boundsRingEnd; deltaSum.reset(); areaStream.polygonStart(); }, polygonEnd: function() { areaStream.polygonEnd(); boundsStream.point = boundsPoint; boundsStream.lineStart = boundsLineStart; boundsStream.lineEnd = boundsLineEnd; if (areaRingSum < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90); else if (deltaSum > epsilon) phi1 = 90; else if (deltaSum < -epsilon) phi0 = -90; range$1[0] = lambda0$1, range$1[1] = lambda1; } }; function boundsPoint(lambda, phi) { ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]); if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } function linePoint(lambda, phi) { var p = cartesian([lambda * radians, phi * radians]); if (p0) { var normal = cartesianCross(p0, p), equatorial = [normal[1], -normal[0], 0], inflection = cartesianCross(equatorial, normal); cartesianNormalizeInPlace(inflection); inflection = spherical(inflection); var delta = lambda - lambda2, sign$$1 = delta > 0 ? 1 : -1, lambdai = inflection[0] * degrees * sign$$1, phii, antimeridian = abs(delta) > 180; if (antimeridian ^ (sign$$1 * lambda2 < lambdai && lambdai < sign$$1 * lambda)) { phii = inflection[1] * degrees; if (phii > phi1) phi1 = phii; } else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign$$1 * lambda2 < lambdai && lambdai < sign$$1 * lambda)) { phii = -inflection[1] * degrees; if (phii < phi0) phi0 = phii; } else { if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } if (antimeridian) { if (lambda < lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } else { if (lambda1 >= lambda0$1) { if (lambda < lambda0$1) lambda0$1 = lambda; if (lambda > lambda1) lambda1 = lambda; } else { if (lambda > lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } } } else { ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]); } if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; p0 = p, lambda2 = lambda; } function boundsLineStart() { boundsStream.point = linePoint; } function boundsLineEnd() { range$1[0] = lambda0$1, range$1[1] = lambda1; boundsStream.point = boundsPoint; p0 = null; } function boundsRingPoint(lambda, phi) { if (p0) { var delta = lambda - lambda2; deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta); } else { lambda00$1 = lambda, phi00$1 = phi; } areaStream.point(lambda, phi); linePoint(lambda, phi); } function boundsRingStart() { areaStream.lineStart(); } function boundsRingEnd() { boundsRingPoint(lambda00$1, phi00$1); areaStream.lineEnd(); if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180); range$1[0] = lambda0$1, range$1[1] = lambda1; p0 = null; } // Finds the left-right distance between two longitudes. // This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want // the distance between ±180° to be 360°. function angle(lambda0, lambda1) { return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1; } function rangeCompare(a, b) { return a[0] - b[0]; } function rangeContains(range$$1, x) { return range$$1[0] <= range$$1[1] ? range$$1[0] <= x && x <= range$$1[1] : x < range$$1[0] || range$$1[1] < x; } var bounds = function(feature) { var i, n, a, b, merged, deltaMax, delta; phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity); ranges = []; geoStream(feature, boundsStream); // First, sort ranges by their minimum longitudes. if (n = ranges.length) { ranges.sort(rangeCompare); // Then, merge any ranges that overlap. for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) { b = ranges[i]; if (rangeContains(a, b[0]) || rangeContains(a, b[1])) { if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1]; if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0]; } else { merged.push(a = b); } } // Finally, find the largest gap between the merged ranges. // The final bounding box will be the inverse of this gap. for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) { b = merged[i]; if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1]; } } ranges = range$1 = null; return lambda0$1 === Infinity || phi0 === Infinity ? [[NaN, NaN], [NaN, NaN]] : [[lambda0$1, phi0], [lambda1, phi1]]; }; var W0; var W1; var X0; var Y0; var Z0; var X1; var Y1; var Z1; var X2; var Y2; var Z2; var lambda00$2; var phi00$2; var x0; var y0; var z0; // previous point var centroidStream = { sphere: noop, point: centroidPoint, lineStart: centroidLineStart, lineEnd: centroidLineEnd, polygonStart: function() { centroidStream.lineStart = centroidRingStart; centroidStream.lineEnd = centroidRingEnd; }, polygonEnd: function() { centroidStream.lineStart = centroidLineStart; centroidStream.lineEnd = centroidLineEnd; } }; // Arithmetic mean of Cartesian vectors. function centroidPoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi); centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)); } function centroidPointCartesian(x, y, z) { ++W0; X0 += (x - X0) / W0; Y0 += (y - Y0) / W0; Z0 += (z - Z0) / W0; } function centroidLineStart() { centroidStream.point = centroidLinePointFirst; } function centroidLinePointFirst(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi); x0 = cosPhi * cos(lambda); y0 = cosPhi * sin(lambda); z0 = sin(phi); centroidStream.point = centroidLinePoint; centroidPointCartesian(x0, y0, z0); } function centroidLinePoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi), x = cosPhi * cos(lambda), y = cosPhi * sin(lambda), z = sin(phi), w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z); W1 += w; X1 += w * (x0 + (x0 = x)); Y1 += w * (y0 + (y0 = y)); Z1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0, y0, z0); } function centroidLineEnd() { centroidStream.point = centroidPoint; } // See J. E. Brock, The Inertia Tensor for a Spherical Triangle, // J. Applied Mechanics 42, 239 (1975). function centroidRingStart() { centroidStream.point = centroidRingPointFirst; } function centroidRingEnd() { centroidRingPoint(lambda00$2, phi00$2); centroidStream.point = centroidPoint; } function centroidRingPointFirst(lambda, phi) { lambda00$2 = lambda, phi00$2 = phi; lambda *= radians, phi *= radians; centroidStream.point = centroidRingPoint; var cosPhi = cos(phi); x0 = cosPhi * cos(lambda); y0 = cosPhi * sin(lambda); z0 = sin(phi); centroidPointCartesian(x0, y0, z0); } function centroidRingPoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos(phi), x = cosPhi * cos(lambda), y = cosPhi * sin(lambda), z = sin(phi), cx = y0 * z - z0 * y, cy = z0 * x - x0 * z, cz = x0 * y - y0 * x, m = sqrt(cx * cx + cy * cy + cz * cz), w = asin(m), // line weight = angle v = m && -w / m; // area weight multiplier X2 += v * cx; Y2 += v * cy; Z2 += v * cz; W1 += w; X1 += w * (x0 + (x0 = x)); Y1 += w * (y0 + (y0 = y)); Z1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0, y0, z0); } var centroid = function(object) { W0 = W1 = X0 = Y0 = Z0 = X1 = Y1 = Z1 = X2 = Y2 = Z2 = 0; geoStream(object, centroidStream); var x = X2, y = Y2, z = Z2, m = x * x + y * y + z * z; // If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid. if (m < epsilon2) { x = X1, y = Y1, z = Z1; // If the feature has zero length, fall back to arithmetic mean of point vectors. if (W1 < epsilon) x = X0, y = Y0, z = Z0; m = x * x + y * y + z * z; // If the feature still has an undefined ccentroid, then return. if (m < epsilon2) return [NaN, NaN]; } return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees]; }; var constant = function(x) { return function() { return x; }; }; var compose = function(a, b) { function compose(x, y) { return x = a(x, y), b(x[0], x[1]); } if (a.invert && b.invert) compose.invert = function(x, y) { return x = b.invert(x, y), x && a.invert(x[0], x[1]); }; return compose; }; function rotationIdentity(lambda, phi) { return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi]; } rotationIdentity.invert = rotationIdentity; function rotateRadians(deltaLambda, deltaPhi, deltaGamma) { return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma)) : rotationLambda(deltaLambda)) : (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma) : rotationIdentity); } function forwardRotationLambda(deltaLambda) { return function(lambda, phi) { return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi]; }; } function rotationLambda(deltaLambda) { var rotation = forwardRotationLambda(deltaLambda); rotation.invert = forwardRotationLambda(-deltaLambda); return rotation; } function rotationPhiGamma(deltaPhi, deltaGamma) { var cosDeltaPhi = cos(deltaPhi), sinDeltaPhi = sin(deltaPhi), cosDeltaGamma = cos(deltaGamma), sinDeltaGamma = sin(deltaGamma); function rotation(lambda, phi) { var cosPhi = cos(phi), x = cos(lambda) * cosPhi, y = sin(lambda) * cosPhi, z = sin(phi), k = z * cosDeltaPhi + x * sinDeltaPhi; return [ atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi), asin(k * cosDeltaGamma + y * sinDeltaGamma) ]; } rotation.invert = function(lambda, phi) { var cosPhi = cos(phi), x = cos(lambda) * cosPhi, y = sin(lambda) * cosPhi, z = sin(phi), k = z * cosDeltaGamma - y * sinDeltaGamma; return [ atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi), asin(k * cosDeltaPhi - x * sinDeltaPhi) ]; }; return rotation; } var rotation = function(rotate) { rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0); function forward(coordinates) { coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians); return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates; } forward.invert = function(coordinates) { coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians); return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates; }; return forward; }; // Generates a circle centered at [0°, 0°], with a given radius and precision. function circleStream(stream, radius, delta, direction, t0, t1) { if (!delta) return; var cosRadius = cos(radius), sinRadius = sin(radius), step = direction * delta; if (t0 == null) { t0 = radius + direction * tau; t1 = radius - step / 2; } else { t0 = circleRadius(cosRadius, t0); t1 = circleRadius(cosRadius, t1); if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau; } for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) { point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]); stream.point(point[0], point[1]); } } // Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0]. function circleRadius(cosRadius, point) { point = cartesian(point), point[0] -= cosRadius; cartesianNormalizeInPlace(point); var radius = acos(-point[1]); return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau; } var circle = function() { var center = constant([0, 0]), radius = constant(90), precision = constant(6), ring, rotate, stream = {point: point}; function point(x, y) { ring.push(x = rotate(x, y)); x[0] *= degrees, x[1] *= degrees; } function circle() { var c = center.apply(this, arguments), r = radius.apply(this, arguments) * radians, p = precision.apply(this, arguments) * radians; ring = []; rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert; circleStream(stream, r, p, 1); c = {type: "Polygon", coordinates: [ring]}; ring = rotate = null; return c; } circle.center = function(_) { return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center; }; circle.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius; }; circle.precision = function(_) { return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision; }; return circle; }; var clipBuffer = function() { var lines = [], line; return { point: function(x, y) { line.push([x, y]); }, lineStart: function() { lines.push(line = []); }, lineEnd: noop, rejoin: function() { if (lines.length > 1) lines.push(lines.pop().concat(lines.shift())); }, result: function() { var result = lines; lines = []; line = null; return result; } }; }; var pointEqual = function(a, b) { return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon; }; function Intersection(point, points, other, entry) { this.x = point; this.z = points; this.o = other; // another intersection this.e = entry; // is an entry? this.v = false; // visited this.n = this.p = null; // next & previous } // A generalized polygon clipping algorithm: given a polygon that has been cut // into its visible line segments, and rejoins the segments by interpolating // along the clip edge. var clipRejoin = function(segments, compareIntersection, startInside, interpolate, stream) { var subject = [], clip = [], i, n; segments.forEach(function(segment) { if ((n = segment.length - 1) <= 0) return; var n, p0 = segment[0], p1 = segment[n], x; // If the first and last points of a segment are coincident, then treat as a // closed ring. TODO if all rings are closed, then the winding order of the // exterior ring should be checked. if (pointEqual(p0, p1)) { stream.lineStart(); for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]); stream.lineEnd(); return; } subject.push(x = new Intersection(p0, segment, null, true)); clip.push(x.o = new Intersection(p0, null, x, false)); subject.push(x = new Intersection(p1, segment, null, false)); clip.push(x.o = new Intersection(p1, null, x, true)); }); if (!subject.length) return; clip.sort(compareIntersection); link(subject); link(clip); for (i = 0, n = clip.length; i < n; ++i) { clip[i].e = startInside = !startInside; } var start = subject[0], points, point; while (1) { // Find first unvisited intersection. var current = start, isSubject = true; while (current.v) if ((current = current.n) === start) return; points = current.z; stream.lineStart(); do { current.v = current.o.v = true; if (current.e) { if (isSubject) { for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.n.x, 1, stream); } current = current.n; } else { if (isSubject) { points = current.p.z; for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.p.x, -1, stream); } current = current.p; } current = current.o; points = current.z; isSubject = !isSubject; } while (!current.v); stream.lineEnd(); } }; function link(array) { if (!(n = array.length)) return; var n, i = 0, a = array[0], b; while (++i < n) { a.n = b = array[i]; b.p = a; a = b; } a.n = b = array[0]; b.p = a; } var sum = adder(); var polygonContains = function(polygon, point) { var lambda = point[0], phi = point[1], normal = [sin(lambda), -cos(lambda), 0], angle = 0, winding = 0; sum.reset(); for (var i = 0, n = polygon.length; i < n; ++i) { if (!(m = (ring = polygon[i]).length)) continue; var ring, m, point0 = ring[m - 1], lambda0 = point0[0], phi0 = point0[1] / 2 + quarterPi, sinPhi0 = sin(phi0), cosPhi0 = cos(phi0); for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) { var point1 = ring[j], lambda1 = point1[0], phi1 = point1[1] / 2 + quarterPi, sinPhi1 = sin(phi1), cosPhi1 = cos(phi1), delta = lambda1 - lambda0, sign$$1 = delta >= 0 ? 1 : -1, absDelta = sign$$1 * delta, antimeridian = absDelta > pi, k = sinPhi0 * sinPhi1; sum.add(atan2(k * sign$$1 * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta))); angle += antimeridian ? delta + sign$$1 * tau : delta; // Are the longitudes either side of the point’s meridian (lambda), // and are the latitudes smaller than the parallel (phi)? if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) { var arc = cartesianCross(cartesian(point0), cartesian(point1)); cartesianNormalizeInPlace(arc); var intersection = cartesianCross(normal, arc); cartesianNormalizeInPlace(intersection); var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]); if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) { winding += antimeridian ^ delta >= 0 ? 1 : -1; } } } } // First, determine whether the South pole is inside or outside: // // It is inside if: // * the polygon winds around it in a clockwise direction. // * the polygon does not (cumulatively) wind around it, but has a negative // (counter-clockwise) area. // // Second, count the (signed) number of times a segment crosses a lambda // from the point to the South pole. If it is zero, then the point is the // same side as the South pole. return (angle < -epsilon || angle < epsilon && sum < -epsilon) ^ (winding & 1); }; var clip = function(pointVisible, clipLine, interpolate, start) { return function(sink) { var line = clipLine(sink), ringBuffer = clipBuffer(), ringSink = clipLine(ringBuffer), polygonStarted = false, polygon, segments, ring; var clip = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: function() { clip.point = pointRing; clip.lineStart = ringStart; clip.lineEnd = ringEnd; segments = []; polygon = []; }, polygonEnd: function() { clip.point = point; clip.lineStart = lineStart; clip.lineEnd = lineEnd; segments = d3Array.merge(segments); var startInside = polygonContains(polygon, start); if (segments.length) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; clipRejoin(segments, compareIntersection, startInside, interpolate, sink); } else if (startInside) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); } if (polygonStarted) sink.polygonEnd(), polygonStarted = false; segments = polygon = null; }, sphere: function() { sink.polygonStart(); sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); sink.polygonEnd(); } }; function point(lambda, phi) { if (pointVisible(lambda, phi)) sink.point(lambda, phi); } function pointLine(lambda, phi) { line.point(lambda, phi); } function lineStart() { clip.point = pointLine; line.lineStart(); } function lineEnd() { clip.point = point; line.lineEnd(); } function pointRing(lambda, phi) { ring.push([lambda, phi]); ringSink.point(lambda, phi); } function ringStart() { ringSink.lineStart(); ring = []; } function ringEnd() { pointRing(ring[0][0], ring[0][1]); ringSink.lineEnd(); var clean = ringSink.clean(), ringSegments = ringBuffer.result(), i, n = ringSegments.length, m, segment, point; ring.pop(); polygon.push(ring); ring = null; if (!n) return; // No intersections. if (clean & 1) { segment = ringSegments[0]; if ((m = segment.length - 1) > 0) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]); sink.lineEnd(); } return; } // Rejoin connected segments. // TODO reuse ringBuffer.rejoin()? if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift())); segments.push(ringSegments.filter(validSegment)); } return clip; }; }; function validSegment(segment) { return segment.length > 1; } // Intersections are sorted along the clip edge. For both antimeridian cutting // and circle clipping, the same comparison is used. function compareIntersection(a, b) { return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1]) - ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]); } var clipAntimeridian = clip( function() { return true; }, clipAntimeridianLine, clipAntimeridianInterpolate, [-pi, -halfPi] ); // Takes a line and cuts into visible segments. Return values: 0 - there were // intersections or the line was empty; 1 - no intersections; 2 - there were // intersections, and the first and last segments should be rejoined. function clipAntimeridianLine(stream) { var lambda0 = NaN, phi0 = NaN, sign0 = NaN, clean; // no intersections return { lineStart: function() { stream.lineStart(); clean = 1; }, point: function(lambda1, phi1) { var sign1 = lambda1 > 0 ? pi : -pi, delta = abs(lambda1 - lambda0); if (abs(delta - pi) < epsilon) { // line crosses a pole stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); stream.point(lambda1, phi0); clean = 0; } else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon; phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); clean = 0; } stream.point(lambda0 = lambda1, phi0 = phi1); sign0 = sign1; }, lineEnd: function() { stream.lineEnd(); lambda0 = phi0 = NaN; }, clean: function() { return 2 - clean; // if intersections, rejoin first and last segments } }; } function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) { var cosPhi0, cosPhi1, sinLambda0Lambda1 = sin(lambda0 - lambda1); return abs(sinLambda0Lambda1) > epsilon ? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1) - sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0)) / (cosPhi0 * cosPhi1 * sinLambda0Lambda1)) : (phi0 + phi1) / 2; } function clipAntimeridianInterpolate(from, to, direction, stream) { var phi; if (from == null) { phi = direction * halfPi; stream.point(-pi, phi); stream.point(0, phi); stream.point(pi, phi); stream.point(pi, 0); stream.point(pi, -phi); stream.point(0, -phi); stream.point(-pi, -phi); stream.point(-pi, 0); stream.point(-pi, phi); } else if (abs(from[0] - to[0]) > epsilon) { var lambda = from[0] < to[0] ? pi : -pi; phi = direction * lambda / 2; stream.point(-lambda, phi); stream.point(0, phi); stream.point(lambda, phi); } else { stream.point(to[0], to[1]); } } var clipCircle = function(radius) { var cr = cos(radius), delta = 6 * radians, smallRadius = cr > 0, notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case function interpolate(from, to, direction, stream) { circleStream(stream, radius, delta, direction, from, to); } function visible(lambda, phi) { return cos(lambda) * cos(phi) > cr; } // Takes a line and cuts into visible segments. Return values used for polygon // clipping: 0 - there were intersections or the line was empty; 1 - no // intersections 2 - there were intersections, and the first and last segments // should be rejoined. function clipLine(stream) { var point0, // previous point c0, // code for previous point v0, // visibility of previous point v00, // visibility of first point clean; // no intersections return { lineStart: function() { v00 = v0 = false; clean = 1; }, point: function(lambda, phi) { var point1 = [lambda, phi], point2, v = visible(lambda, phi), c = smallRadius ? v ? 0 : code(lambda, phi) : v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0; if (!point0 && (v00 = v0 = v)) stream.lineStart(); // Handle degeneracies. // TODO ignore if not clipping polygons. if (v !== v0) { point2 = intersect(point0, point1); if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2)) { point1[0] += epsilon; point1[1] += epsilon; v = visible(point1[0], point1[1]); } } if (v !== v0) { clean = 0; if (v) { // outside going in stream.lineStart(); point2 = intersect(point1, point0); stream.point(point2[0], point2[1]); } else { // inside going out point2 = intersect(point0, point1); stream.point(point2[0], point2[1]); stream.lineEnd(); } point0 = point2; } else if (notHemisphere && point0 && smallRadius ^ v) { var t; // If the codes for two points are different, or are both zero, // and there this segment intersects with the small circle. if (!(c & c0) && (t = intersect(point1, point0, true))) { clean = 0; if (smallRadius) { stream.lineStart(); stream.point(t[0][0], t[0][1]); stream.point(t[1][0], t[1][1]); stream.lineEnd(); } else { stream.point(t[1][0], t[1][1]); stream.lineEnd(); stream.lineStart(); stream.point(t[0][0], t[0][1]); } } } if (v && (!point0 || !pointEqual(point0, point1))) { stream.point(point1[0], point1[1]); } point0 = point1, v0 = v, c0 = c; }, lineEnd: function() { if (v0) stream.lineEnd(); point0 = null; }, // Rejoin first and last segments if there were intersections and the first // and last points were visible. clean: function() { return clean | ((v00 && v0) << 1); } }; } // Intersects the great circle between a and b with the clip circle. function intersect(a, b, two) { var pa = cartesian(a), pb = cartesian(b); // We have two planes, n1.p = d1 and n2.p = d2. // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2). var n1 = [1, 0, 0], // normal n2 = cartesianCross(pa, pb), n2n2 = cartesianDot(n2, n2), n1n2 = n2[0], // cartesianDot(n1, n2), determinant = n2n2 - n1n2 * n1n2; // Two polar points. if (!determinant) return !two && a; var c1 = cr * n2n2 / determinant, c2 = -cr * n1n2 / determinant, n1xn2 = cartesianCross(n1, n2), A = cartesianScale(n1, c1), B = cartesianScale(n2, c2); cartesianAddInPlace(A, B); // Solve |p(t)|^2 = 1. var u = n1xn2, w = cartesianDot(A, u), uu = cartesianDot(u, u), t2 = w * w - uu * (cartesianDot(A, A) - 1); if (t2 < 0) return; var t = sqrt(t2), q = cartesianScale(u, (-w - t) / uu); cartesianAddInPlace(q, A); q = spherical(q); if (!two) return q; // Two intersection points. var lambda0 = a[0], lambda1 = b[0], phi0 = a[1], phi1 = b[1], z; if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z; var delta = lambda1 - lambda0, polar = abs(delta - pi) < epsilon, meridian = polar || delta < epsilon; if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z; // Check that the first point is between a and b. if (meridian ? polar ? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1) : phi0 <= q[1] && q[1] <= phi1 : delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) { var q1 = cartesianScale(u, (-w + t) / uu); cartesianAddInPlace(q1, A); return [q, spherical(q1)]; } } // Generates a 4-bit vector representing the location of a point relative to // the small circle's bounding box. function code(lambda, phi) { var r = smallRadius ? radius : pi - radius, code = 0; if (lambda < -r) code |= 1; // left else if (lambda > r) code |= 2; // right if (phi < -r) code |= 4; // below else if (phi > r) code |= 8; // above return code; } return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]); }; var clipLine = function(a, b, x0, y0, x1, y1) { var ax = a[0], ay = a[1], bx = b[0], by = b[1], t0 = 0, t1 = 1, dx = bx - ax, dy = by - ay, r; r = x0 - ax; if (!dx && r > 0) return; r /= dx; if (dx < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dx > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = x1 - ax; if (!dx && r < 0) return; r /= dx; if (dx < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dx > 0) { if (r < t0) return; if (r < t1) t1 = r; } r = y0 - ay; if (!dy && r > 0) return; r /= dy; if (dy < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dy > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = y1 - ay; if (!dy && r < 0) return; r /= dy; if (dy < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dy > 0) { if (r < t0) return; if (r < t1) t1 = r; } if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy; if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy; return true; }; var clipMax = 1e9; var clipMin = -clipMax; // TODO Use d3-polygon’s polygonContains here for the ring check? // TODO Eliminate duplicate buffering in clipBuffer and polygon.push? function clipRectangle(x0, y0, x1, y1) { function visible(x, y) { return x0 <= x && x <= x1 && y0 <= y && y <= y1; } function interpolate(from, to, direction, stream) { var a = 0, a1 = 0; if (from == null || (a = corner(from, direction)) !== (a1 = corner(to, direction)) || comparePoint(from, to) < 0 ^ direction > 0) { do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0); while ((a = (a + direction + 4) % 4) !== a1); } else { stream.point(to[0], to[1]); } } function corner(p, direction) { return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3 : abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1 : abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0 : direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon } function compareIntersection(a, b) { return comparePoint(a.x, b.x); } function comparePoint(a, b) { var ca = corner(a, 1), cb = corner(b, 1); return ca !== cb ? ca - cb : ca === 0 ? b[1] - a[1] : ca === 1 ? a[0] - b[0] : ca === 2 ? a[1] - b[1] : b[0] - a[0]; } return function(stream) { var activeStream = stream, bufferStream = clipBuffer(), segments, polygon, ring, x__, y__, v__, // first point x_, y_, v_, // previous point first, clean; var clipStream = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: polygonStart, polygonEnd: polygonEnd }; function point(x, y) { if (visible(x, y)) activeStream.point(x, y); } function polygonInside() { var winding = 0; for (var i = 0, n = polygon.length; i < n; ++i) { for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) { a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1]; if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; } else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; } } } return winding; } // Buffer geometry within a polygon and then clip it en masse. function polygonStart() { activeStream = bufferStream, segments = [], polygon = [], clean = true; } function polygonEnd() { var startInside = polygonInside(), cleanInside = clean && startInside, visible = (segments = d3Array.merge(segments)).length; if (cleanInside || visible) { stream.polygonStart(); if (cleanInside) { stream.lineStart(); interpolate(null, null, 1, stream); stream.lineEnd(); } if (visible) { clipRejoin(segments, compareIntersection, startInside, interpolate, stream); } stream.polygonEnd(); } activeStream = stream, segments = polygon = ring = null; } function lineStart() { clipStream.point = linePoint; if (polygon) polygon.push(ring = []); first = true; v_ = false; x_ = y_ = NaN; } // TODO rather than special-case polygons, simply handle them separately. // Ideally, coincident intersection points should be jittered to avoid // clipping issues. function lineEnd() { if (segments) { linePoint(x__, y__); if (v__ && v_) bufferStream.rejoin(); segments.push(bufferStream.result()); } clipStream.point = point; if (v_) activeStream.lineEnd(); } function linePoint(x, y) { var v = visible(x, y); if (polygon) ring.push([x, y]); if (first) { x__ = x, y__ = y, v__ = v; first = false; if (v) { activeStream.lineStart(); activeStream.point(x, y); } } else { if (v && v_) activeStream.point(x, y); else { var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))], b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))]; if (clipLine(a, b, x0, y0, x1, y1)) { if (!v_) { activeStream.lineStart(); activeStream.point(a[0], a[1]); } activeStream.point(b[0], b[1]); if (!v) activeStream.lineEnd(); clean = false; } else if (v) { activeStream.lineStart(); activeStream.point(x, y); clean = false; } } } x_ = x, y_ = y, v_ = v; } return clipStream; }; } var extent = function() { var x0 = 0, y0 = 0, x1 = 960, y1 = 500, cache, cacheStream, clip; return clip = { stream: function(stream) { return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream); }, extent: function(_) { return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]]; } }; }; var lengthSum = adder(); var lambda0$2; var sinPhi0$1; var cosPhi0$1; var lengthStream = { sphere: noop, point: noop, lineStart: lengthLineStart, lineEnd: noop, polygonStart: noop, polygonEnd: noop }; function lengthLineStart() { lengthStream.point = lengthPointFirst; lengthStream.lineEnd = lengthLineEnd; } function lengthLineEnd() { lengthStream.point = lengthStream.lineEnd = noop; } function lengthPointFirst(lambda, phi) { lambda *= radians, phi *= radians; lambda0$2 = lambda, sinPhi0$1 = sin(phi), cosPhi0$1 = cos(phi); lengthStream.point = lengthPoint; } function lengthPoint(lambda, phi) { lambda *= radians, phi *= radians; var sinPhi = sin(phi), cosPhi = cos(phi), delta = abs(lambda - lambda0$2), cosDelta = cos(delta), sinDelta = sin(delta), x = cosPhi * sinDelta, y = cosPhi0$1 * sinPhi - sinPhi0$1 * cosPhi * cosDelta, z = sinPhi0$1 * sinPhi + cosPhi0$1 * cosPhi * cosDelta; lengthSum.add(atan2(sqrt(x * x + y * y), z)); lambda0$2 = lambda, sinPhi0$1 = sinPhi, cosPhi0$1 = cosPhi; } var length = function(object) { lengthSum.reset(); geoStream(object, lengthStream); return +lengthSum; }; var coordinates = [null, null]; var object = {type: "LineString", coordinates: coordinates}; var distance = function(a, b) { coordinates[0] = a; coordinates[1] = b; return length(object); }; var containsObjectType = { Feature: function(object, point) { return containsGeometry(object.geometry, point); }, FeatureCollection: function(object, point) { var features = object.features, i = -1, n = features.length; while (++i < n) if (containsGeometry(features[i].geometry, point)) return true; return false; } }; var containsGeometryType = { Sphere: function() { return true; }, Point: function(object, point) { return containsPoint(object.coordinates, point); }, MultiPoint: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsPoint(coordinates[i], point)) return true; return false; }, LineString: function(object, point) { return containsLine(object.coordinates, point); }, MultiLineString: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsLine(coordinates[i], point)) return true; return false; }, Polygon: function(object, point) { return containsPolygon(object.coordinates, point); }, MultiPolygon: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsPolygon(coordinates[i], point)) return true; return false; }, GeometryCollection: function(object, point) { var geometries = object.geometries, i = -1, n = geometries.length; while (++i < n) if (containsGeometry(geometries[i], point)) return true; return false; } }; function containsGeometry(geometry, point) { return geometry && containsGeometryType.hasOwnProperty(geometry.type) ? containsGeometryType[geometry.type](geometry, point) : false; } function containsPoint(coordinates, point) { return distance(coordinates, point) === 0; } function containsLine(coordinates, point) { var ab = distance(coordinates[0], coordinates[1]), ao = distance(coordinates[0], point), ob = distance(point, coordinates[1]); return ao + ob <= ab + epsilon; } function containsPolygon(coordinates, point) { return !!polygonContains(coordinates.map(ringRadians), pointRadians(point)); } function ringRadians(ring) { return ring = ring.map(pointRadians), ring.pop(), ring; } function pointRadians(point) { return [point[0] * radians, point[1] * radians]; } var contains = function(object, point) { return (object && containsObjectType.hasOwnProperty(object.type) ? containsObjectType[object.type] : containsGeometry)(object, point); }; function graticuleX(y0, y1, dy) { var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1); return function(x) { return y.map(function(y) { return [x, y]; }); }; } function graticuleY(x0, x1, dx) { var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1); return function(y) { return x.map(function(x) { return [x, y]; }); }; } function graticule() { var x1, x0, X1, X0, y1, y0, Y1, Y0, dx = 10, dy = dx, DX = 90, DY = 360, x, y, X, Y, precision = 2.5; function graticule() { return {type: "MultiLineString", coordinates: lines()}; } function lines() { return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X) .concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y)) .concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x)) .concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y)); } graticule.lines = function() { return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; }); }; graticule.outline = function() { return { type: "Polygon", coordinates: [ X(X0).concat( Y(Y1).slice(1), X(X1).reverse().slice(1),