@nativescript/core
Version:
A JavaScript library providing an easy to use api for interacting with iOS and Android platform APIs.
111 lines • 4.6 kB
JavaScript
var _a, _b;
const Object_prototype_toString = {}.toString;
const ArrayBufferString = Object_prototype_toString.call(ArrayBuffer.prototype);
function decoderReplacer(encoded) {
let codePoint = encoded.charCodeAt(0) << 24;
const leadingOnes = Math.clz32(~codePoint) | 0;
let endPos = 0;
const stringLen = encoded.length | 0;
let result = '';
if (leadingOnes < 5 && stringLen >= leadingOnes) {
codePoint = (codePoint << leadingOnes) >>> (24 + leadingOnes);
for (endPos = 1; endPos < leadingOnes; endPos = (endPos + 1) | 0) {
codePoint = (codePoint << 6) | (encoded.charCodeAt(endPos) & 0x3f) /*0b00111111*/;
}
if (codePoint <= 0xffff) {
// BMP code point
result += String.fromCharCode(codePoint);
}
else if (codePoint <= 0x10ffff) {
// https://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae
codePoint = (codePoint - 0x10000) | 0;
result += String.fromCharCode(((codePoint >> 10) + 0xd800) | 0, // highSurrogate
((codePoint & 0x3ff) + 0xdc00) | 0 // lowSurrogate
);
}
else {
endPos = 0;
} // to fill it in with INVALIDs
}
for (; endPos < stringLen; endPos = (endPos + 1) | 0) {
result += '\ufffd';
}
return result;
}
function encoderReplacer(nonAsciiChars) {
// make the UTF string into a binary UTF-8 encoded string
let point = nonAsciiChars.charCodeAt(0) | 0;
if (point >= 0xd800 && point <= 0xdbff) {
const nextcode = nonAsciiChars.charCodeAt(1) | 0;
if (nextcode !== nextcode) {
// NaN because string is 1 code point long
return String.fromCharCode(0xef /*11101111*/, 0xbf /*10111111*/, 0xbd /*10111101*/);
}
// https://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae
if (nextcode >= 0xdc00 && nextcode <= 0xdfff) {
point = (((point - 0xd800) << 10) + nextcode - 0xdc00 + 0x10000) | 0;
if (point > 0xffff) {
return String.fromCharCode((0x1e /*0b11110*/ << 3) | (point >>> 18), (0x2 /*0b10*/ << 6) | ((point >>> 12) & 0x3f) /*0b00111111*/, (0x2 /*0b10*/ << 6) | ((point >>> 6) & 0x3f) /*0b00111111*/, (0x2 /*0b10*/ << 6) | (point & 0x3f) /*0b00111111*/);
}
}
else {
return String.fromCharCode(0xef, 0xbf, 0xbd);
}
}
if (point <= 0x007f) {
return nonAsciiChars;
}
else if (point <= 0x07ff) {
return String.fromCharCode((0x6 << 5) | (point >>> 6), (0x2 << 6) | (point & 0x3f));
}
else {
return String.fromCharCode((0xe /*0b1110*/ << 4) | (point >>> 12), (0x2 /*0b10*/ << 6) | ((point >>> 6) & 0x3f) /*0b00111111*/, (0x2 /*0b10*/ << 6) | (point & 0x3f) /*0b00111111*/);
}
}
export class TextDecoder {
constructor() {
this[_a] = 'TextDecoder';
}
get encoding() {
return 'utf-8';
}
decode(input) {
const buffer = ArrayBuffer.isView(input) ? input.buffer : input;
if (Object_prototype_toString.call(buffer) !== ArrayBufferString) {
throw Error("Failed to execute 'decode' on 'TextDecoder': The provided value is not of type '(ArrayBuffer or ArrayBufferView)'");
}
const inputAs8 = new Uint8Array(buffer);
let resultingString = '';
for (let index = 0, len = inputAs8.length | 0; index < len; index = (index + 32768) | 0) {
resultingString += String.fromCharCode.apply(0, inputAs8.slice(index, (index + 32768) | 0));
}
return resultingString.replace(/[\xc0-\xff][\x80-\xbf]*/g, decoderReplacer);
}
toString() {
return '[object TextDecoder]';
}
}
_a = Symbol.toStringTag;
export class TextEncoder {
constructor() {
this[_b] = 'TextEncoder';
}
get encoding() {
return 'utf-8';
}
encode(input = '') {
// 0xc0 => 0b11000000; 0xff => 0b11111111; 0xc0-0xff => 0b11xxxxxx
// 0x80 => 0b10000000; 0xbf => 0b10111111; 0x80-0xbf => 0b10xxxxxx
const encodedString = input === undefined ? '' : ('' + input).replace(/[\x80-\uD7ff\uDC00-\uFFFF]|[\uD800-\uDBFF][\uDC00-\uDFFF]?/g, encoderReplacer);
const len = encodedString.length | 0, result = new Uint8Array(len);
for (let i = 0; i < len; i = (i + 1) | 0) {
result[i] = encodedString.charCodeAt(i);
}
return result;
}
toString() {
return '[object TextEncoder]';
}
}
_b = Symbol.toStringTag;
//# sourceMappingURL=text-common.js.map