UNPKG

@mui/x-charts-vendor

Version:

Vendored dependencies for MUI X Charts.

92 lines (90 loc) 3.56 kB
"use strict"; // https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock !function (t, i) { "object" == typeof exports && "undefined" != typeof module ? i(exports) : "function" == typeof define && define.amd ? define(["exports"], i) : i((t = "undefined" != typeof globalThis ? globalThis : t || self).d3 = t.d3 || {}); }(this, function (t) { "use strict"; const i = Math.PI, s = 2 * i, h = 1e-6, e = s - h; function n(t) { this._ += t[0]; for (let i = 1, s = t.length; i < s; ++i) this._ += arguments[i] + t[i]; } class _ { constructor(t) { this._x0 = this._y0 = this._x1 = this._y1 = null, this._ = "", this._append = null == t ? n : function (t) { let i = Math.floor(t); if (!(i >= 0)) throw new Error(`invalid digits: ${t}`); if (i > 15) return n; const s = 10 ** i; return function (t) { this._ += t[0]; for (let i = 1, h = t.length; i < h; ++i) this._ += Math.round(arguments[i] * s) / s + t[i]; }; }(t); } moveTo(t, i) { this._append`M${this._x0 = this._x1 = +t},${this._y0 = this._y1 = +i}`; } closePath() { null !== this._x1 && (this._x1 = this._x0, this._y1 = this._y0, this._append`Z`); } lineTo(t, i) { this._append`L${this._x1 = +t},${this._y1 = +i}`; } quadraticCurveTo(t, i, s, h) { this._append`Q${+t},${+i},${this._x1 = +s},${this._y1 = +h}`; } bezierCurveTo(t, i, s, h, e, n) { this._append`C${+t},${+i},${+s},${+h},${this._x1 = +e},${this._y1 = +n}`; } arcTo(t, s, e, n, _) { if (t = +t, s = +s, e = +e, n = +n, (_ = +_) < 0) throw new Error(`negative radius: ${_}`); let a = this._x1, $ = this._y1, o = e - t, r = n - s, p = a - t, d = $ - s, l = p * p + d * d; if (null === this._x1) this._append`M${this._x1 = t},${this._y1 = s}`;else if (l > h) { if (Math.abs(d * o - r * p) > h && _) { let u = e - a, f = n - $, x = o * o + r * r, y = u * u + f * f, c = Math.sqrt(x), M = Math.sqrt(l), b = _ * Math.tan((i - Math.acos((x + l - y) / (2 * c * M))) / 2), g = b / M, w = b / c; Math.abs(g - 1) > h && this._append`L${t + g * p},${s + g * d}`, this._append`A${_},${_},0,0,${+(d * u > p * f)},${this._x1 = t + w * o},${this._y1 = s + w * r}`; } else this._append`L${this._x1 = t},${this._y1 = s}`; } else ; } arc(t, n, _, a, $, o) { if (t = +t, n = +n, o = !!o, (_ = +_) < 0) throw new Error(`negative radius: ${_}`); let r = _ * Math.cos(a), p = _ * Math.sin(a), d = t + r, l = n + p, u = 1 ^ o, f = o ? a - $ : $ - a; null === this._x1 ? this._append`M${d},${l}` : (Math.abs(this._x1 - d) > h || Math.abs(this._y1 - l) > h) && this._append`L${d},${l}`, _ && (f < 0 && (f = f % s + s), f > e ? this._append`A${_},${_},0,1,${u},${t - r},${n - p}A${_},${_},0,1,${u},${this._x1 = d},${this._y1 = l}` : f > h && this._append`A${_},${_},0,${+(f >= i)},${u},${this._x1 = t + _ * Math.cos($)},${this._y1 = n + _ * Math.sin($)}`); } rect(t, i, s, h) { this._append`M${this._x0 = this._x1 = +t},${this._y0 = this._y1 = +i}h${s = +s}v${+h}h${-s}Z`; } toString() { return this._; } } function a() { return new _(); } a.prototype = _.prototype, t.Path = _, t.path = a, t.pathRound = function (t = 3) { return new _(+t); }; });