UNPKG

@mlc-ai/web-llm

Version:

Hardware accelerated language model chats on browsers

38 lines 1.32 kB
import * as tvmjs from "@mlc-ai/web-runtime"; import { Tokenizer } from "@mlc-ai/web-tokenizers"; import { ChatConfig } from "./config"; export declare class EmbeddingPipeline { private config; private tokenizer; private tvm; private device; private vm; private prefill; private params; private contextWindowSize; private prefillChunkSize; private maxBatchSize; private curRoundEmbedTotalTokens; private curRoundEmbedTotalTime; constructor(tvm: tvmjs.Instance, tokenizer: Tokenizer, config: ChatConfig); embedStep(input: string | Array<string> | Array<number> | Array<Array<number>>): Promise<Array<Array<number>>>; dispose(): void; /** * Synchronize the device. */ sync(): Promise<void>; asyncLoadWebGPUPipelines(): Promise<void>; /** * Get the time it took the last `embedStep()` in seconds. */ getCurRoundEmbedTotalTime(): number; /** * Get the number of tokens embedded in the last `embedStep()`. This excludes the padded tokens. */ getCurRoundEmbedTotalTokens(): number; /** * @returns Prefill tokens per second, starting from the last prefill performed. */ getCurRoundEmbedTokensPerSec(): number; } //# sourceMappingURL=embedding.d.ts.map