@mcpflow.io/mcp-mcp-reasoner
Version:
为Claude Desktop 实现的基于系统推理的MCP服务器,采用波束搜索和思维评估。
343 lines (193 loc) • 5.17 kB
Markdown
# MCP Reasoner
<!-- MCPFlow Packaged MCP -->
> 此包由 [MCPFlow](https://mcpflow.io) 打包并发布到npm仓库。
为Claude Desktop 实现的基于系统推理的MCP服务器,采用波束搜索和思维评估。
## 安装与使用
直接使用npx运行:
```bash
npx @mcpflow.io/mcp-mcp-reasoner
```
或者先安装后使用:
```bash
# 安装
npm install @mcpflow.io/mcp-mcp-reasoner
# 使用
npx @mcpflow.io/mcp-mcp-reasoner
```
## 使用方法
## Installation
```
git clone https://github.com/frgmt0/mcp-reasoner.git
OR clone the original:
git clone https://github.com/Jacck/mcp-reasoner.git
cd mcp-reasoner
npm install
npm run build
```
## 工具函数
### processInput
处理输入并确保正确的类型
**参数:**
- `input`: 输入数据
### registerTheTool
注册工具
**参数:**
### handleRequests
处理请求
**参数:**
- `request`: 请求对象
### processThought
使用选定的策略处理思想
**参数:**
- `request`: 处理请求
### getStats
获取推理统计信息
**参数:**
### getStrategyMetrics
获取策略度量
**参数:**
### getCurrentStrategyName
获取当前策略名称
**参数:**
### getBestPath
获取最佳路径
**参数:**
### clear
清除状态
**参数:**
### setStrategy
设置策略
**参数:**
- `beamWidth`: 束宽
- `strategyType`: 策略类型
- `numSimulations`: 模拟次数
### getAvailableStrategies
获取可用策略
**参数:**
### processThought
处理思想
**参数:**
- `request`: 请求
### getBestPath
获取最佳路径
**参数:**
### clear
清除
**参数:**
### getMetrics
获取度量
**参数:**
### clear
清除
**参数:**
### processThought
处理思想
**参数:**
- `request`: 请求
### getBestPath
获取最佳路径
**参数:**
### clear
清除
**参数:**
### getMetrics
获取度量
**参数:**
### clear
清除
**参数:**
### processThought
处理思想
**参数:**
- `request`: 请求
### getBestPath
获取最佳路径
**参数:**
### clear
清除
**参数:**
### getMetrics
获取度量
**参数:**
### clear
清除
**参数:**
## 原始信息
- **开发者:** Jacck
- **版本:** 1.0.0
- **许可证:** MIT License
- **原始仓库:** [Jacck/mcp-reasoner](https://github.com/Jacck/mcp-reasoner)
## 原始README
# MCP Reasoner
A reasoning implementation for Claude Desktop that lets you use both Beam Search and Monte Carlo Tree Search (MCTS). tbh this started as a way to see if we could make Claude even better at complex problem-solving... turns out we definitely can.
### Current Version:
**v2.0.0**
#### What's New:
> Added 2 Experimental Reasoning Algorithms:
>
> - `mcts-002-alpha`
>
> - Uses the A* Search Method along with an early *alpha* implementation of a Policy Simulation Layer
>
> - Also includes an early *alpha* implementation of Adaptive Exploration Simulator & Outcome Based Reasoning Simulator
>
> *NOTE* the implementation of these alpha simulators is not complete and is subject to change
>
> - `mcts-002alt-alpha`
>
> - Uses the Bidirectional Search Method along with an early *alpha* implementation of a Policy Simulation Layer
>
> - Also includes an early *alpha* implementation of Adaptive Exploration Simulator & Outcome Based Reasoning Simulator
>
> *NOTE* the implementation of these alpha simulators is not complete and is subject to change
What happened to `mcts-001-alpha` and `mcts-001alt-alpha`?
> Quite simply: It was useless and near similar to the base `mcts` method. After initial testing the results yielded in basic thought processes was near similar showing that simply adding policy simulation may not have an effect.
So why add Polciy Simulation Layer now?
> Well i think its important to incorporate Policy AND Search in tandem as that is how most of the algorithms implement them.
#### Previous Versions:
**v1.1.0**
> Added model control over search parameters:
>
> beamWidth - lets Claude adjust how many paths to track (1-10)
>
> numSimulations - fine-tune MCTS simulation count (1-150)
## Features
- Two search strategies that you can switch between:
- Beam search (good for straightforward stuff)
- MCTS (when stuff gets complex) with alpha variations (see above)
- Tracks how good different reasoning paths are
- Maps out all the different ways Claude thinks through problems
- Analyzes how the reasoning process went
- Follows the MCP protocol (obviously)
## Installation
```
git clone https://github.com/frgmt0/mcp-reasoner.git
OR clone the original:
git clone https://github.com/Jacck/mcp-reasoner.git
cd mcp-reasoner
npm install
npm run build
```
## Configuration
Add to Claude Desktop config:
```
{
"mcpServers": {
"mcp-reasoner": {
"command": "node",
"args": ["path/to/mcp-reasoner/dist/index.js"],
}
}
}
```
## Testing
[More Testing Coming Soon]
## Benchmarks
[Benchmarking will be added soon]
Key Benchmarks to test against:
- MATH500
- GPQA-Diamond
- GMSK8
- Maybe Polyglot &/or SWE-Bench
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.