@math.gl/polygon
Version:
Polygon/polyline processing utilities
625 lines • 21.4 kB
JavaScript
// math.gl
// SPDX-License-Identifier: MIT and ISC
// Copyright (c) vis.gl contributors
import { getPolygonSignedArea, DimIndex } from "./polygon-utils.js";
/**
* Computes a triangulation of a polygon
* @param positions a flat array of the vertex positions that define the polygon.
* @param holeIndices an array of hole indices if any (e.g. [5, 8] for a 12-vertex input would mean one hole with vertices 5–7 and another with 8–11).
* @param dim the number of elements in each vertex. Size `2` will interpret `positions` as `[x0, y0, x1, y1, ...]` and size `3` will interpret `positions` as `[x0, y0, z0, x1, y1, z1, ...]`. Default `2`.
* @param areas areas of outer polygon and holes as computed by `getPolygonSignedArea()`. Can be optionally supplied to speed up triangulation
* @returns array of indices into the `positions` array that describes the triangulation of the polygon
* Adapted from https://github.com/mapbox/earcut
*/
export function earcut(positions, holeIndices, dim = 2, areas, plane = 'xy') {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : positions.length;
let outerNode = linkedList(positions, 0, outerLen, dim, true, areas && areas[0], plane);
const triangles = [];
if (!outerNode || outerNode.next === outerNode.prev)
return triangles;
let invSize;
let maxX;
let maxY;
let minX;
let minY;
let x;
let y;
if (hasHoles)
outerNode = eliminateHoles(positions, holeIndices, outerNode, dim, areas, plane);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (positions.length > 80 * dim) {
minX = maxX = positions[0];
minY = maxY = positions[1];
for (let i = dim; i < outerLen; i += dim) {
x = positions[i];
y = positions[i + 1];
if (x < minX)
minX = x;
if (y < minY)
minY = y;
if (x > maxX)
maxX = x;
if (y > maxY)
maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 32767 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise, area, plane) {
let i;
let last;
if (area === undefined) {
area = getPolygonSignedArea(data, { start, end, size: dim, plane });
}
let i0 = DimIndex[plane[0]];
let i1 = DimIndex[plane[1]];
// Note that the signed area calculation in math.gl
// has the opposite sign to that which was originally
// present in earcut, thus the `< 0` is reversed
if (clockwise === area < 0) {
for (i = start; i < end; i += dim)
last = insertNode(i, data[i + i0], data[i + i1], last);
}
else {
for (i = end - dim; i >= start; i -= dim)
last = insertNode(i, data[i + i0], data[i + i1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start)
return start;
if (!end)
end = start;
let p = start;
let again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next)
break;
again = true;
}
else {
p = p.next;
}
} while (again || p !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear)
return;
// interlink polygon nodes in z-order
if (!pass && invSize)
indexCurve(ear, minX, minY, invSize);
let stop = ear;
let prev;
let next;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
prev = ear.prev;
next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
// cut off the triangle
triangles.push((prev.i / dim) | 0);
triangles.push((ear.i / dim) | 0);
triangles.push((next.i / dim) | 0);
removeNode(ear);
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1);
// if this didn't work, try curing all small self-intersections locally
}
else if (pass === 1) {
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2);
// as a last resort, try splitting the remaining polygon into two
}
else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
const a = ear.prev;
const b = ear;
const c = ear.next;
if (area(a, b, c) >= 0)
return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
const ax = a.x;
const bx = b.x;
const cx = c.x;
const ay = a.y;
const by = b.y;
const cy = c.y;
// triangle bbox; min & max are calculated like this for speed
const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx;
const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy;
const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx;
const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy;
let p = c.next;
while (p !== a) {
if (p.x >= x0 &&
p.x <= x1 &&
p.y >= y0 &&
p.y <= y1 &&
pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) &&
area(p.prev, p, p.next) >= 0)
return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
const a = ear.prev;
const b = ear;
const c = ear.next;
if (area(a, b, c) >= 0)
return false; // reflex, can't be an ear
const ax = a.x;
const bx = b.x;
const cx = c.x;
const ay = a.y;
const by = b.y;
const cy = c.y;
// triangle bbox; min & max are calculated like this for speed
const x0 = ax < bx ? (ax < cx ? ax : cx) : bx < cx ? bx : cx;
const y0 = ay < by ? (ay < cy ? ay : cy) : by < cy ? by : cy;
const x1 = ax > bx ? (ax > cx ? ax : cx) : bx > cx ? bx : cx;
const y1 = ay > by ? (ay > cy ? ay : cy) : by > cy ? by : cy;
// z-order range for the current triangle bbox;
const minZ = zOrder(x0, y0, minX, minY, invSize);
const maxZ = zOrder(x1, y1, minX, minY, invSize);
let p = ear.prevZ;
let n = ear.nextZ;
// look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p.x >= x0 &&
p.x <= x1 &&
p.y >= y0 &&
p.y <= y1 &&
p !== a &&
p !== c &&
pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) &&
area(p.prev, p, p.next) >= 0)
return false;
p = p.prevZ;
if (n.x >= x0 &&
n.x <= x1 &&
n.y >= y0 &&
n.y <= y1 &&
n !== a &&
n !== c &&
pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) &&
area(n.prev, n, n.next) >= 0)
return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p.x >= x0 &&
p.x <= x1 &&
p.y >= y0 &&
p.y <= y1 &&
p !== a &&
p !== c &&
pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) &&
area(p.prev, p, p.next) >= 0)
return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n.x >= x0 &&
n.x <= x1 &&
n.y >= y0 &&
n.y <= y1 &&
n !== a &&
n !== c &&
pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) &&
area(n.prev, n, n.next) >= 0)
return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles, dim) {
let p = start;
do {
const a = p.prev;
const b = p.next.next;
if (!equals(a, b) &&
intersects(a, p, p.next, b) &&
locallyInside(a, b) &&
locallyInside(b, a)) {
triangles.push((a.i / dim) | 0);
triangles.push((p.i / dim) | 0);
triangles.push((b.i / dim) | 0);
// remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
let c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next);
// run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize, 0);
earcutLinked(c, triangles, dim, minX, minY, invSize, 0);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim, areas, plane) {
const queue = [];
let i;
let len;
let start;
let end;
let list;
for (i = 0, len = holeIndices.length; i < len; i++) {
start = holeIndices[i] * dim;
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
list = linkedList(data, start, end, dim, false, areas && areas[i + 1], plane);
if (list === list.next)
list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareX);
// process holes from left to right
for (i = 0; i < queue.length; i++) {
outerNode = eliminateHole(queue[i], outerNode);
}
return outerNode;
}
function compareX(a, b) {
return a.x - b.x;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
const bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
const bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
filterPoints(bridgeReverse, bridgeReverse.next);
return filterPoints(bridge, bridge.next);
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
let p = outerNode;
const hx = hole.x;
const hy = hole.y;
let qx = -Infinity;
let m;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
const x = p.x + ((hy - p.y) * (p.next.x - p.x)) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
m = p.x < p.next.x ? p : p.next;
if (x === hx)
return m; // hole touches outer segment; pick leftmost endpoint
}
}
p = p.next;
} while (p !== outerNode);
if (!m)
return null;
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
const stop = m;
const mx = m.x;
const my = m.y;
let tanMin = Infinity;
let tan;
p = m;
do {
if (hx >= p.x &&
p.x >= mx &&
hx !== p.x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if (locallyInside(p, hole) &&
(tan < tanMin ||
(tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while (p !== stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector(m, p) {
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
}
// interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
let p = start;
do {
if (p.z === 0)
p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
let e;
let i;
let inSize = 1;
let numMerges;
let p;
let pSize;
let q;
let qSize;
let tail;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q)
break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
}
else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail)
tail.nextZ = e;
else
list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = ((x - minX) * invSize) | 0;
y = ((y - minY) * invSize) | 0;
x = (x | (x << 8)) & 0x00ff00ff;
x = (x | (x << 4)) & 0x0f0f0f0f;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00ff00ff;
y = (y | (y << 4)) & 0x0f0f0f0f;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(start) {
let p = start;
let leftmost = start;
do {
if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y))
leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return ((cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
(ax - px) * (by - py) >= (bx - px) * (ay - py) &&
(bx - px) * (cy - py) >= (cx - px) * (by - py));
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return (a.next.i !== b.i &&
a.prev.i !== b.i &&
!intersectsPolygon(a, b) && // dones't intersect other edges
((locallyInside(a, b) &&
locallyInside(b, a) &&
middleInside(a, b) && // locally visible
(area(a.prev, a, b.prev) || area(a, b.prev, b))) || // does not create opposite-facing sectors
(equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0))); // special zero-length case
}
// signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
// check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects(p1, q1, p2, q2) {
const o1 = sign(area(p1, q1, p2));
const o2 = sign(area(p1, q1, q2));
const o3 = sign(area(p2, q2, p1));
const o4 = sign(area(p2, q2, q1));
if (o1 !== o2 && o3 !== o4)
return true; // general case
if (o1 === 0 && onSegment(p1, p2, q1))
return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 === 0 && onSegment(p1, q2, q1))
return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 === 0 && onSegment(p2, p1, q2))
return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 === 0 && onSegment(p2, q1, q2))
return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment(p, q, r) {
return (q.x <= Math.max(p.x, r.x) &&
q.x >= Math.min(p.x, r.x) &&
q.y <= Math.max(p.y, r.y) &&
q.y >= Math.min(p.y, r.y));
}
function sign(num) {
return num > 0 ? 1 : num < 0 ? -1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
let p = a;
do {
if (p.i !== a.i &&
p.next.i !== a.i &&
p.i !== b.i &&
p.next.i !== b.i &&
intersects(p, p.next, a, b))
return true;
p = p.next;
} while (p !== a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0
? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0
: area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
let p = a;
let inside = false;
const px = (a.x + b.x) / 2;
const py = (a.y + b.y) / 2;
do {
if (p.y > py !== p.next.y > py &&
p.next.y !== p.y &&
px < ((p.next.x - p.x) * (py - p.y)) / (p.next.y - p.y) + p.x)
inside = !inside;
p = p.next;
} while (p !== a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
const a2 = new Vertex(a.i, a.x, a.y);
const b2 = new Vertex(b.i, b.x, b.y);
const an = a.next;
const bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, x, y, last) {
const p = new Vertex(i, x, y);
if (!last) {
p.prev = p;
p.next = p;
}
else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode(p) {
p.next.prev = p.prev;
p.prev.next = p.next;
if (p.prevZ)
p.prevZ.nextZ = p.nextZ;
if (p.nextZ)
p.nextZ.prevZ = p.prevZ;
}
class Vertex {
constructor(i, x, y) {
// previous and next vertex nodes in a polygon ring
this.prev = null;
this.next = null;
// z-order curve value
this.z = 0;
// previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null;
// indicates whether this is a steiner point
this.steiner = false;
this.i = i;
this.x = x;
this.y = y;
}
}
//# sourceMappingURL=earcut.js.map