UNPKG

@mastra/rag

Version:

The Retrieval-Augmented Generation (RAG) module contains document processing and embedding utilities.

22 lines 975 B
import type { MastraVector, MastraEmbeddingModel, QueryResult } from '@mastra/core/vector'; import type { VectorFilter } from '@mastra/core/vector/filter'; import type { DatabaseConfig, ProviderOptions } from '../tools/types.js'; type VectorQuerySearchParams = { indexName: string; vectorStore: MastraVector; queryText: string; model: MastraEmbeddingModel<string>; queryFilter?: VectorFilter; topK: number; includeVectors?: boolean; maxRetries?: number; /** Database-specific configuration options */ databaseConfig?: DatabaseConfig; } & ProviderOptions; interface VectorQuerySearchResult { results: QueryResult[]; queryEmbedding: number[]; } export declare const vectorQuerySearch: ({ indexName, vectorStore, queryText, model, queryFilter, topK, includeVectors, maxRetries, databaseConfig, providerOptions, }: VectorQuerySearchParams) => Promise<VectorQuerySearchResult>; export {}; //# sourceMappingURL=vector-search.d.ts.map