@mastra/rag
Version:
The Retrieval-Augmented Generation (RAG) module contains document processing and embedding utilities.
23 lines • 936 B
TypeScript
import type { MastraVector, QueryResult } from '@mastra/core/vector';
import type { VectorFilter } from '@mastra/core/vector/filter';
import type { EmbeddingModel } from 'ai';
import type { DatabaseConfig } from '../tools/types';
interface VectorQuerySearchParams {
indexName: string;
vectorStore: MastraVector;
queryText: string;
model: EmbeddingModel<string>;
queryFilter?: VectorFilter;
topK: number;
includeVectors?: boolean;
maxRetries?: number;
/** Database-specific configuration options */
databaseConfig?: DatabaseConfig;
}
interface VectorQuerySearchResult {
results: QueryResult[];
queryEmbedding: number[];
}
export declare const vectorQuerySearch: ({ indexName, vectorStore, queryText, model, queryFilter, topK, includeVectors, maxRetries, databaseConfig, }: VectorQuerySearchParams) => Promise<VectorQuerySearchResult>;
export {};
//# sourceMappingURL=vector-search.d.ts.map