UNPKG

@mastra/rag

Version:

The Retrieval-Augmented Generation (RAG) module contains document processing and embedding utilities.

23 lines 936 B
import type { MastraVector, QueryResult } from '@mastra/core/vector'; import type { VectorFilter } from '@mastra/core/vector/filter'; import type { EmbeddingModel } from 'ai'; import type { DatabaseConfig } from '../tools/types'; interface VectorQuerySearchParams { indexName: string; vectorStore: MastraVector; queryText: string; model: EmbeddingModel<string>; queryFilter?: VectorFilter; topK: number; includeVectors?: boolean; maxRetries?: number; /** Database-specific configuration options */ databaseConfig?: DatabaseConfig; } interface VectorQuerySearchResult { results: QueryResult[]; queryEmbedding: number[]; } export declare const vectorQuerySearch: ({ indexName, vectorStore, queryText, model, queryFilter, topK, includeVectors, maxRetries, databaseConfig, }: VectorQuerySearchParams) => Promise<VectorQuerySearchResult>; export {}; //# sourceMappingURL=vector-search.d.ts.map