UNPKG

@mastra/rag

Version:

The Retrieval-Augmented Generation (RAG) module contains document processing and embedding utilities.

42 lines 1.82 kB
import type { MastraLanguageModel } from '@mastra/core/agent'; import type { QuestionExtractPrompt } from '../prompts'; import type { BaseNode } from '../schema'; import { BaseExtractor } from './base'; import type { QuestionAnswerExtractArgs } from './types'; type ExtractQuestion = { /** * Questions extracted from the node as a string (may be empty if extraction fails). */ questionsThisExcerptCanAnswer: string; }; /** * Extract questions from a list of nodes. */ export declare class QuestionsAnsweredExtractor extends BaseExtractor { llm: MastraLanguageModel; questions: number; promptTemplate: QuestionExtractPrompt; embeddingOnly: boolean; /** * Constructor for the QuestionsAnsweredExtractor class. * @param {MastraLanguageModel} llm MastraLanguageModel instance. * @param {number} questions Number of questions to generate. * @param {QuestionExtractPrompt['template']} promptTemplate Optional custom prompt template (should include {context}). * @param {boolean} embeddingOnly Whether to use metadata for embeddings only. */ constructor(options?: QuestionAnswerExtractArgs); /** * Extract answered questions from a node. * @param {BaseNode} node Node to extract questions from. * @returns {Promise<Array<ExtractQuestion> | Array<{}>>} Questions extracted from the node. */ extractQuestionsFromNode(node: BaseNode): Promise<ExtractQuestion>; /** * Extract answered questions from a list of nodes. * @param {BaseNode[]} nodes Nodes to extract questions from. * @returns {Promise<Array<ExtractQuestion> | Array<{}>>} Questions extracted from the nodes. */ extract(nodes: BaseNode[]): Promise<Array<ExtractQuestion> | Array<object>>; } export {}; //# sourceMappingURL=questions.d.ts.map