UNPKG

@mastra/core

Version:

The core foundation of the Mastra framework, providing essential components and interfaces for building AI-powered applications.

66 lines (57 loc) 1.96 kB
'use strict'; var chunk7PRLYMXV_cjs = require('./chunk-7PRLYMXV.cjs'); var cohereAi = require('cohere-ai'); var CohereRelevanceScorer = class { client; model; constructor(model, apiKey) { this.client = new cohereAi.CohereClient({ token: apiKey || process.env.COHERE_API_KEY || "" }); this.model = model; } async getRelevanceScore(query, text) { const response = await this.client.rerank({ query, documents: [text], model: this.model, topN: 1 }); return response.results[0].relevanceScore; } }; // src/relevance/relevance-score-provider.ts function createSimilarityPrompt(query, text) { return `Rate the semantic similarity between the following the query and the text on a scale from 0 to 1 (decimals allowed), where 1 means exactly the same meaning and 0 means completely different: Query: ${query} Text: ${text} Relevance score (0-1):`; } // src/relevance/mastra-agent/index.ts var MastraAgentRelevanceScorer = class { agent; constructor(name, model) { this.agent = new chunk7PRLYMXV_cjs.Agent({ name: `Relevance Scorer ${name}`, instructions: `You are a specialized agent for evaluating the relevance of text to queries. Your task is to rate how well a text passage answers a given query. Output only a number between 0 and 1, where: 1.0 = Perfectly relevant, directly answers the query 0.0 = Completely irrelevant Consider: - Direct relevance to the question - Completeness of information - Quality and specificity Always return just the number, no explanation.`, model }); } async getRelevanceScore(query, text) { const prompt = createSimilarityPrompt(query, text); const response = await this.agent.generate(prompt); return parseFloat(response.text); } }; exports.CohereRelevanceScorer = CohereRelevanceScorer; exports.MastraAgentRelevanceScorer = MastraAgentRelevanceScorer; exports.createSimilarityPrompt = createSimilarityPrompt;