UNPKG

@lvlte/modf

Version:

Get the integral and fractional parts of a given number.

110 lines (87 loc) 3.65 kB
# modf ```ts function modf(x: number, literal: boolean = false): [number, number] ``` > Return the integral and fractional parts of the given number. Both parts have > the same sign as the input. > > If `literal` is set to `true` the fractional part is reinterpreted by reading > the decimals in the base 10 string representation of `x` (safe when `x` is a > number literal, or if its value is deterministic, and if its representation > matches exactly the value to be used). > > _@param_ `x` - The input number. > _@param_ `literal` - Whether to read `x` as a base 10 literal (default: `false`). > _@returns_ A tuple `[ipart, fpart]`, respectively the integral and fractional > parts of `x`, or `[NaN, NaN]` if `x` is not a finite number. ## Install ```sh npm install @lvlte/modf ``` ## Usage ```js // ESM import { modf, ipart, fpart } from '@lvlte/modf'; ``` ```js // CJS const { modf, ipart, fpart } = require('@lvlte/modf'); ``` ```js const x = 1.3; // 1.3000000000000000(444089209850062616169452667236328125) // True value, equivalent to [ Math.trunc(x), x % 1 ] let [xi, xf] = modf(x); // [1, 0.30000000000000004] xi = ipart(x); // 1 xf = fpart(x); // 0.30000000000000004 // Reinterpret [xi, xf] = modf(x, true); // [1, 0.3] xf = fpart(x, true); // 0.3 ``` ## Why ? Getting the integer part of a number is trivial. However when it comes to the fractional part, we usually substract from the given number its integer part, or take the remainder left over after integer division by 1. For terminating decimals that have an infinite place-value representation in binary, these operations can "reveal" the tiny error induced by floating-point rounding, as substracting the higher bits representing the integral part and left-shifting the mantissa by the number of leading zeros makes that error more significant in the result : ``` (float64 mantissa can hold 53 bits) 17.3 = 10001.010011001100110011001100110011001100110011001101₂ + ԑ ^---^ ^----------------------------------------------^ 5 48 17.3 - 17 = 0.010011001100110011001100110011001100110011001101000000₂ + ԑ -^----------------------------------------------|----^ 48 5 0.3 = 0.010011001100110011001100110011001100110011001100110011₂ + ԑԑ ^---------------------------------------------------^ 53 ԑԑ < ԑ The fractional part of 0.3 has 53 bits of precision The fractional part of 1.3 has 52 bits of precision The fractional part of 17.3 has 48 bits of precision ... ``` Since the magnitude of such error grows with the magnitude of the integer part, unintuitive situations can arise. When `x` is a (terminating decimal) number literal, or when its decimals are deterministically fixed, and when its base 10 representation matches exactly the value to be used, then you can set the `literal` parameter to `true` to make modf/fpart reinterpret the decimals of `x` in order to get the most accurate fractional part, eg. ```js let x, xf; x = 1.2; xf = fpart(x)); // 0.19999999999999996 xf = fpart(x, true)); // 0.2 x = 2.2; xf = fpart(x); // 0.20000000000000018 xf = fpart(x, true); // 0.2 x = 2**48 + 0.2; xf = 10 * fpart(x)); // 1.875 xf = 10 * fpart(x, true)); // 2 ``` **Always leave the `literal` parameter to `false` when `x` is the result of previous calculations (except for rare cases where its value is deterministic like in the last example above).**