UNPKG

@lumen-labs-dev/whisper-node

Version:

Local audio transcription on CPU. Node.js bindings for OpenAI's Whisper.

277 lines (201 loc) 10.2 kB
# Whisper-Node [![npm downloads](https://img.shields.io/npm/dm/@lumen-labs-dev/whisper-node)](https://npmjs.org/package/@lumen-labs-dev/whisper-node) [![npm downloads](https://img.shields.io/npm/l/@lumen-labs-dev/whisper-node)](https://npmjs.org/package/@lumen-labs-dev/whisper-node) Node.js bindings for OpenAI's Whisper. Transcription done local with VAD and Speaker Diarization. ## Features - Output transcripts to **JSON** (also .txt .srt .vtt) - **Optimized for CPU** (Including Apple Silicon ARM) - Timestamp precision to single word ## Installation 1. Add dependency to project ```text npm install @lumen-labs-dev/whisper-node ``` 2. Download a Whisper model [OPTIONAL] ```text npx whisper-node ``` Alternatively, the same downloader can be invoked as: ```text npx whisper-node download ``` ### Windows (precompiled binaries) On Windows, whisper-node downloads precompiled Whisper binaries during install (or first use) and runs them directly — no local build tools are required. - To choose a binary flavor before installing: ```bash setx WHISPER_WIN_FLAVOR cpu # or: blas | cublas-11.8 | cublas-12.4 ``` - Ensure the Microsoft Visual C++ 2015–2022 Redistributable (x64) is installed. If you see error code 0xC0000135 when starting the binary, install the redistributable and retry. - Optional: point to a custom Windows binary subfolder inside `lib/whisper.cpp`: ```bash setx WHISPER_WIN_BIN_DIR Win64 # examples: Win64 | BlasWin64 | CublasWin64-11.8 | CublasWin64-12.4 ``` Non-Windows platforms still build from source when needed. If the package was installed without bundling `lib/whisper.cpp`, the downloader will automatically set up the upstream `whisper.cpp` assets inside `node_modules/@lumen-labs-dev/whisper-node/lib/whisper.cpp`. On Windows, this uses precompiled release archives; on non-Windows it may clone and build from source. ## Usage ```javascript import { whisper } from '@lumen-labs-dev/whisper-node'; const transcript = await whisper("example/sample.wav"); console.log(transcript); // output: [ {start,end,speech} ] ``` ### Output (JSON) ```javascript [ { "start": "00:00:14.310", // time stamp begin "end": "00:00:16.480", // time stamp end "speech": "howdy" // transcription } ] ``` ### Full Options List ```javascript import { whisper } from '@lumen-labs-dev/whisper-node'; const filePath = "example/sample.wav"; // required const options = { modelName: "base.en", // default // modelPath: "/custom/path/to/model.bin", // use model in a custom directory (cannot use along with 'modelName') whisperOptions: { language: 'auto', // default (use 'auto' for auto detect) gen_file_txt: false, // outputs .txt file gen_file_subtitle: false, // outputs .srt file gen_file_vtt: false, // outputs .vtt file // Enable per-word timestamps only if you really need them. // For typical sentence/segment output, leave this off. // When per-word is detected, whisper-node will automatically merge words into sentences. word_timestamps: false, no_timestamps: false, // when true, Whisper prints only text (no [..] lines) // timestamp_size: 0 // cannot use along with word_timestamps:true }, // Forwarded to shelljs.exec (defaults shown) shellOptions: { silent: true, async: false, } } const transcript = await whisper(filePath, options); ``` ### API - **Function**: `whisper(filePath: string, options?: { modelName?, modelPath?, whisperOptions?, shellOptions? }) => Promise<ITranscriptLine[]>` - **Models**: pass either `modelName` (one of the official names) or a `modelPath` pointing to a `.bin` file. Do not pass both. - **Return**: array of `{ start, end, speech }` objects parsed from Whisper's console output. Notes: - Setting `no_timestamps: true` changes Whisper's console output format. Since the JSON parser expects `[start --> end] text` lines, using `no_timestamps: true` will typically yield an empty array. Prefer `timestamp_size` (segment-level) or `word_timestamps` (word-level) when you need structured JSON. - If you enable `word_timestamps`, whisper-node will auto-merge single-word lines into sentence-level segments using pause and punctuation heuristics. You can still access raw lines before merge by calling the underlying CLI yourself. - You can still generate `.txt/.srt/.vtt` files via `gen_file_*` flags even if you don't use the JSON array. ### Automatic audio conversion (fluent-ffmpeg) `whisper-node` will automatically convert common audio/video inputs (e.g., mp3, m4a, wav, mp4) into 16 kHz mono WAV when needed using `fluent-ffmpeg` and the bundled `ffmpeg-static`/`ffprobe-static` binaries. The converted file is written next to your input as `<name>.wav16k.wav` and used for transcription. If your input is already a 16kHz mono WAV, it is used as-is without conversion. ### Optional: Speaker diarization (Node, naive) You can enrich the transcript with speaker labels without Python using a lightweight, naive diarization: - VAD by energy threshold - K-means clustering over simple features Usage: ```ts import whisper, { DiarizationOptions } from '@lumen-labs-dev/whisper-node'; const transcript = await whisper('audio.mp3', { diarization: { enabled: true, numSpeakers: 2, // or omit to auto-guess a small K } }); // Each transcript line may include speaker: 'S0', 'S1', ... ``` Notes: - This is a basic approach and won’t handle overlapping speakers or noisy audio robustly. It is intended as a simple, CPU-only baseline. - For production-grade results, consider integrating an advanced pipeline (e.g., WhisperX/pyannote) externally and mapping their segments back to `ITranscriptLine`. ### Input File Format Files must be .wav and 16 kHz Example .mp3 file converted with an [FFmpeg](https://ffmpeg.org) command: ```ffmpeg -i input.mp3 -ar 16000 output.wav``` ### CLI (Model Downloader) Run the interactive downloader (downloads into `node_modules/@lumen-labs-dev/whisper-node/lib/whisper.cpp/models`; non-Windows will build on first use if needed): ```text npx @lumen-labs-dev/whisper-node ``` You will be prompted to choose one of: | Model | Disk | RAM | |-----------|--------|---------| | tiny | 75 MB | ~273 MB | | tiny.en | 75 MB | ~273 MB | | base | 142 MB | ~388 MB | | base.en | 142 MB | ~388 MB | | small | 466 MB | ~852 MB | | small.en | 466 MB | ~852 MB | | medium | 1.5 GB | ~2.1 GB | | medium.en | 1.5 GB | ~2.1 GB | | large-v1 | 2.9 GB | ~3.9 GB | | large | 2.9 GB | ~3.9 GB | If you already have a model elsewhere, pass `modelPath` in the API and skip the downloader. ### Configuration file You can configure defaults without passing options in code by creating one of the following files in your project root: - `whisper-node.config.json` - `whisper.config.json` Or set an explicit path via environment variable `WHISPER_NODE_CONFIG=/abs/path/to/config.json`. Example config: ```json { "modelName": "base.en", "modelPath": "/custom/models/ggml-base.en.bin", "whisperOptions": { "language": "auto", "word_timestamps": true }, "shellOptions": { "silent": true } } ``` Notes: - Options provided directly to the `whisper()` function always override values from the config file. - The downloader CLI will use `modelName` from config to skip the prompt when valid. ### Logging Control verbosity via environment variable (defaults to INFO): ```bash # ERROR | WARN | INFO | DEBUG setx WHISPER_NODE_LOG_LEVEL DEBUG ``` ### Troubleshooting - **"'make' failed"**: Ensure build tools are installed. - Windows: install `make` (see link above) or use MSYS2/Chocolatey alternatives. - macOS: `xcode-select --install`. - Linux: `sudo apt-get install build-essential` (Debian/Ubuntu) or the equivalent for your distro. - **"'<model>' not downloaded! Run 'npx whisper-node download'"**: Either run the downloader or provide a valid `modelPath`. - **Empty transcript array**: Remove `no_timestamps: true`. The JSON parser expects timestamped lines like `[00:00:01.000 --> 00:00:02.000] text`. - **Paths with spaces**: Supported. Paths are automatically quoted. - **Windows binary won't start (0xC0000135)**: Install the Microsoft Visual C++ 2015–2022 Redistributable (x64) and retry. - **Large inputs**: Very long audio can use significant memory for conversion/diarization. Consider splitting into smaller chunks. ## Project structure ``` src/ cli/ # CLI entrypoints (e.g., download) config/ # constants and configuration core/ # domain logic (whisper command builder) infra/ # process/shell integration with whisper.cpp utils/ # helper utilities (e.g., transcript parsing) scripts/ # development/test scripts ``` ## Made with - [Whisper OpenAI](https://github.com/ggml-org/whisper.cpp) - [ShellJS](https://www.npmjs.com/package/shelljs) ## Roadmap - [x] Support projects not using Typescript - [x] Allow custom directory for storing models - [x] Config files as alternative to model download cli - [ ] Remove *path*, *shelljs* and *prompt-sync* package for browser, react-native expo, and webassembly compatibility - [x] [fluent-ffmpeg](https://www.npmjs.com/package/fluent-ffmpeg) to automatically convert to 16Hz .wav files as well as support separating audio from video - [x] Speaker diarization (basic Node baseline) - [ ] [Implement WhisperX as optional alternative model](https://github.com/m-bain/whisperX) for diarization and higher precision timestamps (as alternative to C++ version) - [ ] Add option for viewing detected language as described in [Issue 16](https://github.com/LumenLabsDev/whisper-node/issues/16) - [x] Include TypeScript types in ```d.ts``` file - [x] Add support for language option - [ ] Add support for transcribing audio streams as already implemented in whisper.cpp ## Modifying whisper-node ```npm run build``` - runs tsc, outputs to `/dist` and gives sh permission to `dist/cli/download.js` ```npm run test``` - runs the compiled example in `dist/scripts/test.js` ## Acknowledgements - [Georgi Gerganov](https://ggerganov.com/) - [Ari](https://aricv.com) - [Maximiliano Veiga](https://lumenlabs.dev/)