@luma.gl/shadertools
Version:
Shader module system for luma.gl
2 lines • 9.68 kB
JavaScript
export default "#if defined(USE_TEX_LOD) && !defined(FEATURE_GLSL_TEXTURE_LOD)\n# error PBR fragment shader: Texture LOD is not available\n#endif\n\n#if !defined(HAS_TANGENTS) && !defined(FEATURE_GLSL_DERIVATIVES)\n# error PBR fragment shader: Derivatives are not available\n#endif\n\n\n#if (__VERSION__ < 300)\n #define SMART_FOR(INIT, WEBGL1COND, WEBGL2COND, INCR) for (INIT; WEBGL1COND; INCR)\n#else\n #define SMART_FOR(INIT, WEBGL1COND, WEBGL2COND, INCR) for (INIT; WEBGL2COND; INCR)\n#endif\n\nprecision highp float;\n\nuniform bool pbr_uUnlit;\n\n#ifdef USE_IBL\nuniform samplerCube u_DiffuseEnvSampler;\nuniform samplerCube u_SpecularEnvSampler;\nuniform sampler2D u_brdfLUT;\nuniform vec2 u_ScaleIBLAmbient;\n#endif\n\n#ifdef HAS_BASECOLORMAP\nuniform sampler2D u_BaseColorSampler;\n#endif\n#ifdef HAS_NORMALMAP\nuniform sampler2D u_NormalSampler;\nuniform float u_NormalScale;\n#endif\n#ifdef HAS_EMISSIVEMAP\nuniform sampler2D u_EmissiveSampler;\nuniform vec3 u_EmissiveFactor;\n#endif\n#ifdef HAS_METALROUGHNESSMAP\nuniform sampler2D u_MetallicRoughnessSampler;\n#endif\n#ifdef HAS_OCCLUSIONMAP\nuniform sampler2D u_OcclusionSampler;\nuniform float u_OcclusionStrength;\n#endif\n\n#ifdef ALPHA_CUTOFF\nuniform float u_AlphaCutoff;\n#endif\n\nuniform vec2 u_MetallicRoughnessValues;\nuniform vec4 u_BaseColorFactor;\n\nuniform vec3 u_Camera;\n#ifdef PBR_DEBUG\nuniform vec4 u_ScaleDiffBaseMR;\nuniform vec4 u_ScaleFGDSpec;\n#endif\n\nvarying vec3 pbr_vPosition;\n\nvarying vec2 pbr_vUV;\n\n#ifdef HAS_NORMALS\n#ifdef HAS_TANGENTS\nvarying mat3 pbr_vTBN;\n#else\nvarying vec3 pbr_vNormal;\n#endif\n#endif\n\n\nstruct PBRInfo\n{\n float NdotL;\n float NdotV;\n float NdotH;\n float LdotH;\n float VdotH;\n float perceptualRoughness;\n float metalness;\n vec3 reflectance0;\n vec3 reflectance90;\n float alphaRoughness;\n vec3 diffuseColor;\n vec3 specularColor;\n vec3 n;\n vec3 v;\n};\n\nconst float M_PI = 3.141592653589793;\nconst float c_MinRoughness = 0.04;\n\nvec4 SRGBtoLINEAR(vec4 srgbIn)\n{\n#ifdef MANUAL_SRGB\n#ifdef SRGB_FAST_APPROXIMATION\n vec3 linOut = pow(srgbIn.xyz,vec3(2.2));\n#else\n vec3 bLess = step(vec3(0.04045),srgbIn.xyz);\n vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess );\n#endif\n return vec4(linOut,srgbIn.w);;\n#else\n return srgbIn;\n#endif\n}\n\nvec3 getNormal()\n{\n#ifndef HAS_TANGENTS\n vec3 pos_dx = dFdx(pbr_vPosition);\n vec3 pos_dy = dFdy(pbr_vPosition);\n vec3 tex_dx = dFdx(vec3(pbr_vUV, 0.0));\n vec3 tex_dy = dFdy(vec3(pbr_vUV, 0.0));\n vec3 t = (tex_dy.t * pos_dx - tex_dx.t * pos_dy) / (tex_dx.s * tex_dy.t - tex_dy.s * tex_dx.t);\n\n#ifdef HAS_NORMALS\n vec3 ng = normalize(pbr_vNormal);\n#else\n vec3 ng = cross(pos_dx, pos_dy);\n#endif\n\n t = normalize(t - ng * dot(ng, t));\n vec3 b = normalize(cross(ng, t));\n mat3 tbn = mat3(t, b, ng);\n#else\n mat3 tbn = pbr_vTBN;\n#endif\n\n#ifdef HAS_NORMALMAP\n vec3 n = texture2D(u_NormalSampler, pbr_vUV).rgb;\n n = normalize(tbn * ((2.0 * n - 1.0) * vec3(u_NormalScale, u_NormalScale, 1.0)));\n#else\n vec3 n = normalize(tbn[2].xyz);\n#endif\n\n return n;\n}\n\n\n#ifdef USE_IBL\nvec3 getIBLContribution(PBRInfo pbrInputs, vec3 n, vec3 reflection)\n{\n float mipCount = 9.0;\n float lod = (pbrInputs.perceptualRoughness * mipCount);\n vec3 brdf = SRGBtoLINEAR(texture2D(u_brdfLUT,\n vec2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb;\n vec3 diffuseLight = SRGBtoLINEAR(textureCube(u_DiffuseEnvSampler, n)).rgb;\n\n#ifdef USE_TEX_LOD\n vec3 specularLight = SRGBtoLINEAR(textureCubeLod(u_SpecularEnvSampler, reflection, lod)).rgb;\n#else\n vec3 specularLight = SRGBtoLINEAR(textureCube(u_SpecularEnvSampler, reflection)).rgb;\n#endif\n\n vec3 diffuse = diffuseLight * pbrInputs.diffuseColor;\n vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y);\n diffuse *= u_ScaleIBLAmbient.x;\n specular *= u_ScaleIBLAmbient.y;\n\n return diffuse + specular;\n}\n#endif\n\n\nvec3 diffuse(PBRInfo pbrInputs)\n{\n return pbrInputs.diffuseColor / M_PI;\n}\n\nvec3 specularReflection(PBRInfo pbrInputs)\n{\n return pbrInputs.reflectance0 +\n (pbrInputs.reflectance90 - pbrInputs.reflectance0) *\n pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);\n}\n\n\n\nfloat geometricOcclusion(PBRInfo pbrInputs)\n{\n float NdotL = pbrInputs.NdotL;\n float NdotV = pbrInputs.NdotV;\n float r = pbrInputs.alphaRoughness;\n\n float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));\n float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));\n return attenuationL * attenuationV;\n}\n\n\n\n\n\nfloat microfacetDistribution(PBRInfo pbrInputs)\n{\n float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;\n float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;\n return roughnessSq / (M_PI * f * f);\n}\n\nvoid PBRInfo_setAmbientLight(inout PBRInfo pbrInputs) {\n pbrInputs.NdotL = 1.0;\n pbrInputs.NdotH = 0.0;\n pbrInputs.LdotH = 0.0;\n pbrInputs.VdotH = 1.0;\n}\n\nvoid PBRInfo_setDirectionalLight(inout PBRInfo pbrInputs, vec3 lightDirection) {\n vec3 n = pbrInputs.n;\n vec3 v = pbrInputs.v;\n vec3 l = normalize(lightDirection);\n vec3 h = normalize(l+v);\n\n pbrInputs.NdotL = clamp(dot(n, l), 0.001, 1.0);\n pbrInputs.NdotH = clamp(dot(n, h), 0.0, 1.0);\n pbrInputs.LdotH = clamp(dot(l, h), 0.0, 1.0);\n pbrInputs.VdotH = clamp(dot(v, h), 0.0, 1.0);\n}\n\nvoid PBRInfo_setPointLight(inout PBRInfo pbrInputs, PointLight pointLight) {\n vec3 light_direction = normalize(pointLight.position - pbr_vPosition);\n PBRInfo_setDirectionalLight(pbrInputs, light_direction);\n}\n\nvec3 calculateFinalColor(PBRInfo pbrInputs, vec3 lightColor) {\n vec3 F = specularReflection(pbrInputs);\n float G = geometricOcclusion(pbrInputs);\n float D = microfacetDistribution(pbrInputs);\n vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);\n vec3 specContrib = F * G * D / (4.0 * pbrInputs.NdotL * pbrInputs.NdotV);\n return pbrInputs.NdotL * lightColor * (diffuseContrib + specContrib);\n}\n\nvec4 pbr_filterColor(vec4 colorUnused)\n{\n#ifdef HAS_BASECOLORMAP\n vec4 baseColor = SRGBtoLINEAR(texture2D(u_BaseColorSampler, pbr_vUV)) * u_BaseColorFactor;\n#else\n vec4 baseColor = u_BaseColorFactor;\n#endif\n\n#ifdef ALPHA_CUTOFF\n if (baseColor.a < u_AlphaCutoff) {\n discard;\n }\n#endif\n\n vec3 color = vec3(0, 0, 0);\n\n if(pbr_uUnlit){\n color.rgb = baseColor.rgb;\n }\n else{\n\n\n float perceptualRoughness = u_MetallicRoughnessValues.y;\n float metallic = u_MetallicRoughnessValues.x;\n#ifdef HAS_METALROUGHNESSMAP\n\n vec4 mrSample = texture2D(u_MetallicRoughnessSampler, pbr_vUV);\n perceptualRoughness = mrSample.g * perceptualRoughness;\n metallic = mrSample.b * metallic;\n#endif\n perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0);\n metallic = clamp(metallic, 0.0, 1.0);\n\n float alphaRoughness = perceptualRoughness * perceptualRoughness;\n\n vec3 f0 = vec3(0.04);\n vec3 diffuseColor = baseColor.rgb * (vec3(1.0) - f0);\n diffuseColor *= 1.0 - metallic;\n vec3 specularColor = mix(f0, baseColor.rgb, metallic);\n float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);\n\n\n\n float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);\n vec3 specularEnvironmentR0 = specularColor.rgb;\n vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;\n\n vec3 n = getNormal();\n vec3 v = normalize(u_Camera - pbr_vPosition);\n\n float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0);\n vec3 reflection = -normalize(reflect(v, n));\n\n PBRInfo pbrInputs = PBRInfo(\n 0.0,\n NdotV,\n 0.0,\n 0.0,\n 0.0,\n perceptualRoughness,\n metallic,\n specularEnvironmentR0,\n specularEnvironmentR90,\n alphaRoughness,\n diffuseColor,\n specularColor,\n n,\n v\n );\n\n#ifdef USE_LIGHTS\n PBRInfo_setAmbientLight(pbrInputs);\n color += calculateFinalColor(pbrInputs, lighting_uAmbientLight.color);\n SMART_FOR(int i = 0, i < MAX_LIGHTS, i < lighting_uDirectionalLightCount, i++) {\n if (i < lighting_uDirectionalLightCount) {\n PBRInfo_setDirectionalLight(pbrInputs, lighting_uDirectionalLight[i].direction);\n color += calculateFinalColor(pbrInputs, lighting_uDirectionalLight[i].color);\n }\n }\n SMART_FOR(int i = 0, i < MAX_LIGHTS, i < lighting_uPointLightCount, i++) {\n if (i < lighting_uPointLightCount) {\n PBRInfo_setPointLight(pbrInputs, lighting_uPointLight[i]);\n float attenuation = getPointLightAttenuation(lighting_uPointLight[i], distance(lighting_uPointLight[i].position, pbr_vPosition));\n color += calculateFinalColor(pbrInputs, lighting_uPointLight[i].color / attenuation);\n }\n }\n#endif\n#ifdef USE_IBL\n color += getIBLContribution(pbrInputs, n, reflection);\n#endif\n#ifdef HAS_OCCLUSIONMAP\n float ao = texture2D(u_OcclusionSampler, pbr_vUV).r;\n color = mix(color, color * ao, u_OcclusionStrength);\n#endif\n\n#ifdef HAS_EMISSIVEMAP\n vec3 emissive = SRGBtoLINEAR(texture2D(u_EmissiveSampler, pbr_vUV)).rgb * u_EmissiveFactor;\n color += emissive;\n#endif\n\n#ifdef PBR_DEBUG\n\n\n\n\n\n color = mix(color, baseColor.rgb, u_ScaleDiffBaseMR.y);\n color = mix(color, vec3(metallic), u_ScaleDiffBaseMR.z);\n color = mix(color, vec3(perceptualRoughness), u_ScaleDiffBaseMR.w);\n#endif\n\n }\n\n return vec4(pow(color,vec3(1.0/2.2)), baseColor.a);\n}\n";
//# sourceMappingURL=pbr-fragment.glsl.js.map