UNPKG

@lokesh.dhakar/quantize

Version:

A node.js module for color quantization, based on Leptonica.

625 lines (590 loc) 18.5 kB
/* * Block below copied from Protovis: http://mbostock.github.com/protovis/ * Copyright 2010 Stanford Visualization Group * Licensed under the BSD License: http://www.opensource.org/licenses/bsd-license.php */ var pv = { naturalOrder: function naturalOrder(a, b) { return a < b ? -1 : a > b ? 1 : 0; }, sum: function sum(array) { return array.reduce(function (p, d) { return p + d; }, 0); }, max: function max(array) { return Math.max.apply(null, array); } }; /* * quantize.js Copyright 2008 Nick Rabinowitz * Ported to node.js by Olivier Lesnicki * Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php */ /* * Modified Median Cut Quantization (MMCQ) Algorithm Explanation: * * The MMCQ algorithm is used for color quantization, reducing the number of distinct colors * in an image while maintaining visual similarity. Here's how it works: * * 1. Initialization: Create a 3D color space (VBox) representing the RGB color cube. * * R * | * | +-------+ * | / /| * | / / | * |/ / | * +-------+ | * | | | * | | / * | | / * | |/ * +-------+ * / * / * B G * * 2. Color Histogram: Generate a histogram of colors, reducing from 8 to 5 bits per channel. * * Frequency * | * | ██ * | ██ ██ * | ██████████ * +------------ * Colors * * 3. Initial VBox: Create an initial VBox encompassing all colors in the histogram. * * 4. Iterative Splitting: Repeatedly split VBoxes until the desired color count is reached: * a. Select the VBox with the largest population. * b. Find the longest dimension (R, G, or B). * c. Find the median point along that dimension. * d. Split the VBox into two new VBoxes at that point. * * +-------+ +---+---+ * | | -> | | | * | | | | | * +-------+ +---+---+ * * 5. Two-phase Splitting: * a. First phase: Split based on pixel count until 75% of target colors are reached. * b. Second phase: Split based on pixel count * volume in color space. * * Phase 1 Phase 2 * +---+---+ +---+---+ * | 1 | 2 | | 1a| 1b| * +---+---+ → +---+---+ * | 3 | 4 | | 2 | 3 | * +---+---+ +---+---+ * * 6. Color Mapping: Each final VBox represents a color in the palette (usually the average). * * 7. Nearest Color Matching: For colors not in the palette, find the nearest by Euclidean distance. * * Original Palette Mapped * + ● ● ● + * | \ | / ● * | \|/ * + ● + * * Key components: * - VBox: Represents a 3D box in color space. * - CMap: The final color map containing all VBoxes (colors) in the palette. * - PQueue: Priority queue for efficient VBox selection. * - getHisto: Creates the initial color histogram. * - vboxFromPixels: Creates the initial VBox from pixel data. * - medianCutApply: Performs VBox splitting. * - quantize: Main function orchestrating the entire process. * * This implementation provides an efficient way to reduce an image's color palette * while preserving visual quality by focusing on the most significant color regions. */ /** * Basic Javascript port of the MMCQ (modified median cut quantization) * algorithm from the Leptonica library (http://www.leptonica.com/). * Returns a color map you can use to map original pixels to the reduced * palette. Still a work in progress. * * @author Nick Rabinowitz * @example // array of pixels as [R,G,B] arrays var myPixels = [[190,197,190], [202,204,200], [207,214,210], [211,214,211], [205,207,207] // etc ]; var maxColors = 4; var cmap = MMCQ.quantize(myPixels, maxColors); var newPalette = cmap.palette(); var newPixels = myPixels.map(function(p) { return cmap.map(p); }); */ /** * SimplePalette class */ var SimpleColorMap = /*#__PURE__*/function () { /** * @param {Array} pixels - An array of [r, g, b] pixel values */ function SimpleColorMap(colors) { this.colors = colors; } /** * Returns the stored palette (array of pixels) * @returns {Array} The array of [r, g, b] pixel values */ var _proto = SimpleColorMap.prototype; _proto.palette = function palette() { return this.colors; }; _proto.map = function map(color) { return color; }; return SimpleColorMap; }(); var MMCQ = function () { // private constants var sigbits = 5, rshift = 8 - sigbits, maxIterations = 1000, fractByPopulations = 0.75; // get reduced-space color index for a pixel function getColorIndex(r, g, b) { return (r << 2 * sigbits) + (g << sigbits) + b; } // Simple priority queue function PQueue(comparator) { var contents = [], sorted = false; function sort() { contents.sort(comparator); sorted = true; } return { push: function push(o) { contents.push(o); sorted = false; }, peek: function peek(index) { if (!sorted) sort(); if (index === undefined) index = contents.length - 1; return contents[index]; }, pop: function pop() { if (!sorted) sort(); return contents.pop(); }, size: function size() { return contents.length; }, map: function map(f) { return contents.map(f); }, debug: function debug() { if (!sorted) sort(); return contents; } }; } // 3d color space box function VBox(r1, r2, g1, g2, b1, b2, histo) { var vbox = this; vbox.r1 = r1; vbox.r2 = r2; vbox.g1 = g1; vbox.g2 = g2; vbox.b1 = b1; vbox.b2 = b2; vbox.histo = histo; } VBox.prototype = { volume: function volume(force) { var vbox = this; if (!vbox._volume || force) { vbox._volume = (vbox.r2 - vbox.r1 + 1) * (vbox.g2 - vbox.g1 + 1) * (vbox.b2 - vbox.b1 + 1); } return vbox._volume; }, count: function count(force) { var vbox = this, histo = vbox.histo; if (!vbox._count_set || force) { var npix = 0, i, j, k, index; for (i = vbox.r1; i <= vbox.r2; i++) { for (j = vbox.g1; j <= vbox.g2; j++) { for (k = vbox.b1; k <= vbox.b2; k++) { index = getColorIndex(i, j, k); npix += histo[index] || 0; } } } vbox._count = npix; vbox._count_set = true; } return vbox._count; }, copy: function copy() { var vbox = this; return new VBox(vbox.r1, vbox.r2, vbox.g1, vbox.g2, vbox.b1, vbox.b2, vbox.histo); }, avg: function avg(force) { var vbox = this, histo = vbox.histo; if (!vbox._avg || force) { var ntot = 0, mult = 1 << 8 - sigbits, rsum = 0, gsum = 0, bsum = 0, hval, i, j, k, histoindex; // Special case: if the box represents a single color if (vbox.r1 === vbox.r2 && vbox.g1 === vbox.g2 && vbox.b1 === vbox.b2) { vbox._avg = [vbox.r1 << rshift, vbox.g1 << rshift, vbox.b1 << rshift]; } else { for (i = vbox.r1; i <= vbox.r2; i++) { for (j = vbox.g1; j <= vbox.g2; j++) { for (k = vbox.b1; k <= vbox.b2; k++) { histoindex = getColorIndex(i, j, k); hval = histo[histoindex] || 0; ntot += hval; rsum += hval * (i + 0.5) * mult; gsum += hval * (j + 0.5) * mult; bsum += hval * (k + 0.5) * mult; } } } if (ntot) { vbox._avg = [~~(rsum / ntot), ~~(gsum / ntot), ~~(bsum / ntot)]; } else { vbox._avg = [~~(mult * (vbox.r1 + vbox.r2 + 1) / 2), ~~(mult * (vbox.g1 + vbox.g2 + 1) / 2), ~~(mult * (vbox.b1 + vbox.b2 + 1) / 2)]; } } } return vbox._avg; }, contains: function contains(pixel) { var vbox = this, rval = pixel[0] >> rshift; gval = pixel[1] >> rshift; bval = pixel[2] >> rshift; return rval >= vbox.r1 && rval <= vbox.r2 && gval >= vbox.g1 && gval <= vbox.g2 && bval >= vbox.b1 && bval <= vbox.b2; } }; // Color map /** * CMap (Color Map) constructor * * This function initializes a new CMap object, which is used to store and manage * color information in the quantization process. The CMap uses a priority queue (PQueue) * to efficiently organize and access color data. * * Data Structure: * - CMap: An object containing a priority queue of VBox objects. * - VBox (Volume Box): Represents a 3D color space volume. Each VBox contains: * - Color range information (r1, r2, g1, g2, b1, b2) * - A histogram of colors within this range * - Methods for calculating average color, volume, and other properties * * The priority queue is sorted based on the product of each VBox's count (number of pixels) * and volume (size in color space). This sorting helps in selecting the most significant * color ranges for the quantized palette, balancing between color popularity and diversity. * * The CMap structure allows for efficient color quantization by iteratively splitting * the color space (represented by VBoxes) and selecting the most representative colors. */ function CMap() { this.vboxes = new PQueue(function (a, b) { return pv.naturalOrder(a.vbox.count() * a.vbox.volume(), b.vbox.count() * b.vbox.volume()); }); } CMap.prototype = { push: function push(vbox) { this.vboxes.push({ vbox: vbox, color: vbox.avg() }); }, palette: function palette() { return this.vboxes.map(function (vb) { return vb.color; }); }, size: function size() { return this.vboxes.size(); }, map: function map(color) { var vboxes = this.vboxes; for (var i = 0; i < vboxes.size(); i++) { if (vboxes.peek(i).vbox.contains(color)) { return vboxes.peek(i).color; } } return this.nearest(color); }, nearest: function nearest(color) { var vboxes = this.vboxes, d1, d2, pColor; for (var i = 0; i < vboxes.size(); i++) { d2 = Math.sqrt(Math.pow(color[0] - vboxes.peek(i).color[0], 2) + Math.pow(color[1] - vboxes.peek(i).color[1], 2) + Math.pow(color[2] - vboxes.peek(i).color[2], 2)); if (d2 < d1 || d1 === undefined) { d1 = d2; pColor = vboxes.peek(i).color; } } return pColor; }, forcebw: function forcebw() { // XXX: won't work yet var vboxes = this.vboxes; vboxes.sort(function (a, b) { return pv.naturalOrder(pv.sum(a.color), pv.sum(b.color)); }); // force darkest color to black if everything < 5 var lowest = vboxes[0].color; if (lowest[0] < 5 && lowest[1] < 5 && lowest[2] < 5) vboxes[0].color = [0, 0, 0]; // force lightest color to white if everything > 251 var idx = vboxes.length - 1, highest = vboxes[idx].color; if (highest[0] > 251 && highest[1] > 251 && highest[2] > 251) vboxes[idx].color = [255, 255, 255]; } }; // histo (1-d array, giving the number of pixels in // each quantized region of color space), or null on error function getHisto(pixels) { var histosize = 1 << 3 * sigbits, histo = new Array(histosize), index, rval, gval, bval; pixels.forEach(function (pixel) { rval = pixel[0] >> rshift; gval = pixel[1] >> rshift; bval = pixel[2] >> rshift; index = getColorIndex(rval, gval, bval); histo[index] = (histo[index] || 0) + 1; }); return histo; } function vboxFromPixels(pixels, histo) { var rmin = 1000000, rmax = 0, gmin = 1000000, gmax = 0, bmin = 1000000, bmax = 0, rval, gval, bval; // find min/max pixels.forEach(function (pixel) { rval = pixel[0] >> rshift; gval = pixel[1] >> rshift; bval = pixel[2] >> rshift; if (rval < rmin) rmin = rval;else if (rval > rmax) rmax = rval; if (gval < gmin) gmin = gval;else if (gval > gmax) gmax = gval; if (bval < bmin) bmin = bval;else if (bval > bmax) bmax = bval; }); return new VBox(rmin, rmax, gmin, gmax, bmin, bmax, histo); } function medianCutApply(histo, vbox) { if (!vbox.count()) return; var rw = vbox.r2 - vbox.r1 + 1, gw = vbox.g2 - vbox.g1 + 1, bw = vbox.b2 - vbox.b1 + 1, maxw = pv.max([rw, gw, bw]); // only one pixel, no split if (vbox.count() == 1) { return [vbox.copy()]; } /* Find the partial sum arrays along the selected axis. */ var total = 0, partialsum = [], lookaheadsum = [], i, j, k, sum, index; if (maxw == rw) { for (i = vbox.r1; i <= vbox.r2; i++) { sum = 0; for (j = vbox.g1; j <= vbox.g2; j++) { for (k = vbox.b1; k <= vbox.b2; k++) { index = getColorIndex(i, j, k); sum += histo[index] || 0; } } total += sum; partialsum[i] = total; } } else if (maxw == gw) { for (i = vbox.g1; i <= vbox.g2; i++) { sum = 0; for (j = vbox.r1; j <= vbox.r2; j++) { for (k = vbox.b1; k <= vbox.b2; k++) { index = getColorIndex(j, i, k); sum += histo[index] || 0; } } total += sum; partialsum[i] = total; } } else { /* maxw == bw */ for (i = vbox.b1; i <= vbox.b2; i++) { sum = 0; for (j = vbox.r1; j <= vbox.r2; j++) { for (k = vbox.g1; k <= vbox.g2; k++) { index = getColorIndex(j, k, i); sum += histo[index] || 0; } } total += sum; partialsum[i] = total; } } partialsum.forEach(function (d, i) { lookaheadsum[i] = total - d; }); function doCut(color) { var dim1 = color + '1', dim2 = color + '2', left, right, vbox1, vbox2, d2, count2 = 0; for (i = vbox[dim1]; i <= vbox[dim2]; i++) { if (partialsum[i] > total / 2) { vbox1 = vbox.copy(); vbox2 = vbox.copy(); left = i - vbox[dim1]; right = vbox[dim2] - i; if (left <= right) d2 = Math.min(vbox[dim2] - 1, ~~(i + right / 2));else d2 = Math.max(vbox[dim1], ~~(i - 1 - left / 2)); // avoid 0-count boxes while (!partialsum[d2]) d2++; count2 = lookaheadsum[d2]; while (!count2 && partialsum[d2 - 1]) count2 = lookaheadsum[--d2]; // set dimensions vbox1[dim2] = d2; vbox2[dim1] = vbox1[dim2] + 1; return [vbox1, vbox2]; } } } // determine the cut planes return maxw == rw ? doCut('r') : maxw == gw ? doCut('g') : doCut('b'); } function quantize(pixels, maxcolors) { // Add input validation if (!Number.isInteger(maxcolors) || maxcolors < 1 || maxcolors > 256) { throw new Error("Invalid maximum color count. It must be an integer between 1 and 256."); } // short-circuit if (!pixels.length || maxcolors < 2 || maxcolors > 256) { // console.log('wrong number of maxcolors'); return false; } // short-circuit if (!pixels.length || maxcolors < 2 || maxcolors > 256) { // console.log('wrong number of maxcolors'); return false; } // Create an array of unique colors var uniqueColors = []; var seenColors = new Set(); for (var i = 0; i < pixels.length; i++) { var color = pixels[i]; var colorKey = color.join(','); if (!seenColors.has(colorKey)) { seenColors.add(colorKey); uniqueColors.push(color); } } // If the number of unique colors is already less than or equal to maxColors, // return these colors directly. if (uniqueColors.length <= maxcolors) { return new SimpleColorMap(uniqueColors); } // XXX: check color content and convert to grayscale if insufficient var histo = getHisto(pixels); histo.forEach(function () { }); // get the beginning vbox from the colors var vbox = vboxFromPixels(pixels, histo), pq = new PQueue(function (a, b) { return pv.naturalOrder(a.count(), b.count()); }); pq.push(vbox); // inner function to do the iteration function iter(lh, target) { var ncolors = lh.size(), niters = 0, vbox; while (niters < maxIterations) { if (ncolors >= target) return; if (niters++ > maxIterations) { // console.log("infinite loop; perhaps too few pixels!"); return; } vbox = lh.pop(); if (!vbox.count()) { /* just put it back */ lh.push(vbox); niters++; continue; } // do the cut var vboxes = medianCutApply(histo, vbox), vbox1 = vboxes[0], vbox2 = vboxes[1]; if (!vbox1) { // console.log("vbox1 not defined; shouldn't happen!"); return; } lh.push(vbox1); if (vbox2) { /* vbox2 can be null */ lh.push(vbox2); ncolors++; } } } // first set of colors, sorted by population iter(pq, fractByPopulations * maxcolors); // console.log(pq.size(), pq.debug().length, pq.debug().slice()); // Re-sort by the product of pixel occupancy times the size in color space. var pq2 = new PQueue(function (a, b) { return pv.naturalOrder(a.count() * a.volume(), b.count() * b.volume()); }); while (pq.size()) { pq2.push(pq.pop()); } // next set - generate the median cuts using the (npix * vol) sorting. iter(pq2, maxcolors); // calculate the actual colors var cmap = new CMap(); while (pq2.size()) { cmap.push(pq2.pop()); } return cmap; } return { quantize: quantize }; }(); var quantize = MMCQ.quantize; export { quantize as default };