@lobehub/chat
Version:
Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.
100 lines (82 loc) • 3.47 kB
text/typescript
import { describe, expect, it } from 'vitest';
import { convertSenseNovaMessage } from './sensenovaHelpers';
describe('convertSenseNovaMessage', () => {
it('should convert string content to text type array', () => {
const content = 'Hello world';
const result = convertSenseNovaMessage(content);
expect(result).toEqual([{ type: 'text', text: 'Hello world' }]);
});
it('should handle array content with text type', () => {
const content = [{ type: 'text', text: 'Hello world' }];
const result = convertSenseNovaMessage(content);
expect(result).toEqual([{ type: 'text', text: 'Hello world' }]);
});
it('should convert image_url with base64 format to image_base64', () => {
const content = [
{ type: 'image_url', image_url: { url: '' } },
];
const result = convertSenseNovaMessage(content);
expect(result).toEqual([{ type: 'image_base64', image_base64: 'ABCDEF123456' }]);
});
it('should keep image_url format for non-base64 urls', () => {
const content = [{ type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } }];
const result = convertSenseNovaMessage(content);
expect(result).toEqual([{ type: 'image_url', image_url: 'https://example.com/image.jpg' }]);
});
it('should handle mixed content types', () => {
const content = [
{ type: 'text', text: 'Hello world' },
{ type: 'image_url', image_url: { url: '' } },
{ type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } },
];
const result = convertSenseNovaMessage(content);
expect(result).toEqual([
{ type: 'text', text: 'Hello world' },
{ type: 'image_base64', image_base64: 'ABCDEF123456' },
{ type: 'image_url', image_url: 'https://example.com/image.jpg' },
]);
});
it('should filter out invalid items', () => {
const content = [
{ type: 'text', text: 'Hello world' },
{ type: 'unknown', value: 'should be filtered' },
{ type: 'image_url', image_url: { notUrl: 'missing url field' } },
];
const result = convertSenseNovaMessage(content);
expect(result).toEqual([{ type: 'text', text: 'Hello world' }]);
});
it('should handle the example input format correctly', () => {
const messages = [
{
content: [
{
content: 'Hi',
role: 'user',
},
{
image_url: {
detail: 'auto',
url: '',
},
type: 'image_url',
},
],
role: 'user',
},
];
// This is simulating how you might use convertSenseNovaMessage with the example input
// Note: The actual function only converts the content part, not the entire messages array
const content = messages[0].content;
// This is how the function would be expected to handle a mixed array like this
// However, the actual test would need to be adjusted based on how your function
// is intended to handle this specific format with nested content objects
const result = convertSenseNovaMessage([
{ type: 'text', text: 'Hi' },
{ type: 'image_url', image_url: { url: '' } },
]);
expect(result).toEqual([
{ type: 'text', text: 'Hi' },
{ type: 'image_base64', image_base64: 'ABCDEF123456' },
]);
});
});