@lobehub/chat
Version:
Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.
246 lines (209 loc) • 7.83 kB
text/typescript
// @vitest-environment node
import OpenAI from 'openai';
import { Mock, afterEach, beforeEach, describe, expect, it, vi } from 'vitest';
// 引入模块以便于对函数进行spy
import { ChatStreamCallbacks, LobeOpenAICompatibleRuntime } from '@/libs/model-runtime';
import * as debugStreamModule from '../utils/debugStream';
import officalOpenAIModels from './fixtures/openai-models.json';
import { LobeOpenAI } from './index';
// Mock the console.error to avoid polluting test output
vi.spyOn(console, 'error').mockImplementation(() => {});
describe('LobeOpenAI', () => {
let instance: LobeOpenAICompatibleRuntime;
beforeEach(() => {
instance = new LobeOpenAI({ apiKey: 'test' });
// 使用 vi.spyOn 来模拟 chat.completions.create 方法
vi.spyOn(instance['client'].chat.completions, 'create').mockResolvedValue(
new ReadableStream() as any,
);
vi.spyOn(instance['client'].models, 'list').mockResolvedValue({ data: [] } as any);
});
afterEach(() => {
vi.clearAllMocks();
});
describe('chat', () => {
it('should return a StreamingTextResponse on successful API call', async () => {
// Arrange
const mockStream = new ReadableStream();
const mockResponse = Promise.resolve(mockStream);
(instance['client'].chat.completions.create as Mock).mockResolvedValue(mockResponse);
// Act
const result = await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'text-davinci-003',
temperature: 0,
});
// Assert
expect(result).toBeInstanceOf(Response);
});
describe('Error', () => {
it('should return ProviderBizError with an openai error response when OpenAI.APIError is thrown', async () => {
// Arrange
const apiError = new OpenAI.APIError(
400,
{
status: 400,
error: {
message: 'Bad Request',
},
},
'Error message',
{},
);
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError);
// Act
try {
await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'text-davinci-003',
temperature: 0,
});
} catch (e) {
expect(e).toEqual({
endpoint: 'https://api.openai.com/v1',
error: {
error: { message: 'Bad Request' },
status: 400,
},
errorType: 'ProviderBizError',
provider: 'openai',
});
}
});
it('should throw AgentRuntimeError with NoOpenAIAPIKey if no apiKey is provided', async () => {
try {
new LobeOpenAI({});
} catch (e) {
expect(e).toEqual({ errorType: 'InvalidProviderAPIKey' });
}
});
it('should return ProviderBizError with the cause when OpenAI.APIError is thrown with cause', async () => {
// Arrange
const errorInfo = {
stack: 'abc',
cause: {
message: 'api is undefined',
},
};
const apiError = new OpenAI.APIError(400, errorInfo, 'module error', {});
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError);
// Act
try {
await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'text-davinci-003',
temperature: 0,
});
} catch (e) {
expect(e).toEqual({
endpoint: 'https://api.openai.com/v1',
error: {
cause: { message: 'api is undefined' },
stack: 'abc',
},
errorType: 'ProviderBizError',
provider: 'openai',
});
}
});
it('should return ProviderBizError with an cause response with desensitize Url', async () => {
// Arrange
const errorInfo = {
stack: 'abc',
cause: { message: 'api is undefined' },
};
const apiError = new OpenAI.APIError(400, errorInfo, 'module error', {});
instance = new LobeOpenAI({
apiKey: 'test',
baseURL: 'https://api.abc.com/v1',
});
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError);
// Act
try {
await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'gpt-3.5-turbo',
temperature: 0,
});
} catch (e) {
expect(e).toEqual({
endpoint: 'https://api.***.com/v1',
error: {
cause: { message: 'api is undefined' },
stack: 'abc',
},
errorType: 'ProviderBizError',
provider: 'openai',
});
}
});
it('should return AgentRuntimeError for non-OpenAI errors', async () => {
// Arrange
const genericError = new Error('Generic Error');
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(genericError);
// Act
try {
await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'text-davinci-003',
temperature: 0,
});
} catch (e) {
expect(e).toEqual({
endpoint: 'https://api.openai.com/v1',
errorType: 'AgentRuntimeError',
provider: 'openai',
error: {
name: genericError.name,
cause: genericError.cause,
message: genericError.message,
stack: genericError.stack,
},
});
}
});
});
describe('DEBUG', () => {
it('should call debugStream and return StreamingTextResponse when DEBUG_OPENAI_CHAT_COMPLETION is 1', async () => {
// Arrange
const mockProdStream = new ReadableStream() as any; // 模拟的 prod 流
const mockDebugStream = new ReadableStream({
start(controller) {
controller.enqueue('Debug stream content');
controller.close();
},
}) as any;
mockDebugStream.toReadableStream = () => mockDebugStream; // 添加 toReadableStream 方法
// 模拟 chat.completions.create 返回值,包括模拟的 tee 方法
(instance['client'].chat.completions.create as Mock).mockResolvedValue({
tee: () => [mockProdStream, { toReadableStream: () => mockDebugStream }],
});
// 保存原始环境变量值
const originalDebugValue = process.env.DEBUG_OPENAI_CHAT_COMPLETION;
// 模拟环境变量
process.env.DEBUG_OPENAI_CHAT_COMPLETION = '1';
vi.spyOn(debugStreamModule, 'debugStream').mockImplementation(() => Promise.resolve());
// 执行测试
// 运行你的测试函数,确保它会在条件满足时调用 debugStream
// 假设的测试函数调用,你可能需要根据实际情况调整
await instance.chat({
messages: [{ content: 'Hello', role: 'user' }],
model: 'text-davinci-003',
temperature: 0,
});
// 验证 debugStream 被调用
expect(debugStreamModule.debugStream).toHaveBeenCalled();
// 恢复原始环境变量值
process.env.DEBUG_OPENAI_CHAT_COMPLETION = originalDebugValue;
});
});
});
describe('models', () => {
it('should get models', async () => {
// mock the models.list method
(instance['client'].models.list as Mock).mockResolvedValue({ data: officalOpenAIModels });
const list = await instance.models();
expect(list).toMatchSnapshot();
});
});
});