UNPKG

@lobehub/chat

Version:

Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.

379 lines (325 loc) • 11.4 kB
import { EnhancedGenerateContentResponse } from '@google/generative-ai'; import { describe, expect, it, vi } from 'vitest'; import * as uuidModule from '@/utils/uuid'; import { GoogleGenerativeAIStream } from './google-ai'; describe('GoogleGenerativeAIStream', () => { it('should transform Google Generative AI stream to protocol stream', async () => { vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1'); const mockGenerateContentResponse = (text: string, functionCalls?: any[]) => ({ text: () => text, functionCall: () => functionCalls?.[0], functionCalls: () => functionCalls, }) as EnhancedGenerateContentResponse; const mockGoogleStream = new ReadableStream({ start(controller) { controller.enqueue(mockGenerateContentResponse('Hello')); controller.enqueue( mockGenerateContentResponse('', [{ name: 'testFunction', args: { arg1: 'value1' } }]), ); controller.enqueue(mockGenerateContentResponse(' world!')); controller.close(); }, }); const onStartMock = vi.fn(); const onTextMock = vi.fn(); const onToolCallMock = vi.fn(); const onCompletionMock = vi.fn(); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream, { callbacks: { onStart: onStartMock, onText: onTextMock, onToolsCalling: onToolCallMock, onCompletion: onCompletionMock, }, }); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual([ // text 'id: chat_1\n', 'event: text\n', `data: "Hello"\n\n`, // tool call 'id: chat_1\n', 'event: tool_calls\n', `data: [{"function":{"arguments":"{\\"arg1\\":\\"value1\\"}","name":"testFunction"},"id":"testFunction_0","index":0,"type":"function"}]\n\n`, // text 'id: chat_1\n', 'event: text\n', `data: " world!"\n\n`, ]); expect(onStartMock).toHaveBeenCalledTimes(1); expect(onTextMock).toHaveBeenNthCalledWith(1, 'Hello'); expect(onTextMock).toHaveBeenNthCalledWith(2, ' world!'); expect(onToolCallMock).toHaveBeenCalledTimes(1); expect(onCompletionMock).toHaveBeenCalledTimes(1); }); it('should handle empty stream', async () => { const mockGoogleStream = new ReadableStream({ start(controller) { controller.close(); }, }); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual([]); }); it('should handle image', async () => { vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1'); const data = { candidates: [ { content: { parts: [{ inlineData: { mimeType: 'image/png', data: 'iVBORw0KGgoAA' } }], role: 'model', }, index: 0, }, ], usageMetadata: { promptTokenCount: 6, totalTokenCount: 6, promptTokensDetails: [{ modality: 'TEXT', tokenCount: 6 }], }, modelVersion: 'gemini-2.0-flash-exp', }; const mockGenerateContentResponse = (text: string, functionCalls?: any[]) => ({ text: () => text, functionCall: () => functionCalls?.[0], functionCalls: () => functionCalls, }) as EnhancedGenerateContentResponse; const mockGoogleStream = new ReadableStream({ start(controller) { controller.enqueue(data); controller.close(); }, }); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual([ // image 'id: chat_1\n', 'event: base64_image\n', `data: ""\n\n`, ]); }); it('should handle token count', async () => { vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1'); const data = { candidates: [{ content: { role: 'model' }, finishReason: 'STOP', index: 0 }], usageMetadata: { promptTokenCount: 266, totalTokenCount: 266, promptTokensDetails: [ { modality: 'TEXT', tokenCount: 8 }, { modality: 'IMAGE', tokenCount: 258 }, ], }, modelVersion: 'gemini-2.0-flash-exp', }; const mockGoogleStream = new ReadableStream({ start(controller) { controller.enqueue(data); controller.close(); }, }); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual([ // stop 'id: chat_1\n', 'event: stop\n', `data: "STOP"\n\n`, // usage 'id: chat_1\n', 'event: usage\n', `data: {"inputImageTokens":258,"inputTextTokens":8,"outputTextTokens":0,"totalInputTokens":266,"totalOutputTokens":0,"totalTokens":266}\n\n`, ]); }); it('should handle stop with content', async () => { vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1'); const data = [ { candidates: [ { content: { parts: [{ text: '234' }], role: 'model' }, safetyRatings: [ { category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' }, ], }, ], text: () => '234', usageMetadata: { promptTokenCount: 20, totalTokenCount: 20, promptTokensDetails: [{ modality: 'TEXT', tokenCount: 20 }], }, modelVersion: 'gemini-2.0-flash-exp-image-generation', }, { text: () => '567890\n', candidates: [ { content: { parts: [{ text: '567890\n' }], role: 'model' }, finishReason: 'STOP', safetyRatings: [ { category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' }, ], }, ], usageMetadata: { promptTokenCount: 19, candidatesTokenCount: 11, totalTokenCount: 30, promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }], candidatesTokensDetails: [{ modality: 'TEXT', tokenCount: 11 }], }, modelVersion: 'gemini-2.0-flash-exp-image-generation', }, ]; const mockGoogleStream = new ReadableStream({ start(controller) { data.forEach((item) => { controller.enqueue(item); }); controller.close(); }, }); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual( [ 'id: chat_1', 'event: text', 'data: "234"\n', 'id: chat_1', 'event: text', `data: "567890\\n"\n`, // stop 'id: chat_1', 'event: stop', `data: "STOP"\n`, // usage 'id: chat_1', 'event: usage', `data: {"inputTextTokens":19,"outputTextTokens":11,"totalInputTokens":19,"totalOutputTokens":11,"totalTokens":30}\n`, ].map((i) => i + '\n'), ); }); it('should handle stop with content and thought', async () => { vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1'); const data = [ { candidates: [ { content: { parts: [{ text: '234' }], role: 'model' }, safetyRatings: [ { category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' }, ], }, ], text: () => '234', usageMetadata: { promptTokenCount: 19, candidatesTokenCount: 3, totalTokenCount: 122, promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }], thoughtsTokenCount: 100, }, modelVersion: 'gemini-2.0-flash-exp-image-generation', }, { text: () => '567890\n', candidates: [ { content: { parts: [{ text: '567890\n' }], role: 'model' }, finishReason: 'STOP', safetyRatings: [ { category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' }, { category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' }, ], }, ], usageMetadata: { promptTokenCount: 19, candidatesTokenCount: 11, totalTokenCount: 131, promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }], candidatesTokensDetails: [{ modality: 'TEXT', tokenCount: 11 }], thoughtsTokenCount: 100, }, modelVersion: 'gemini-2.0-flash-exp-image-generation', }, ]; const mockGoogleStream = new ReadableStream({ start(controller) { data.forEach((item) => { controller.enqueue(item); }); controller.close(); }, }); const protocolStream = GoogleGenerativeAIStream(mockGoogleStream); const decoder = new TextDecoder(); const chunks = []; // @ts-ignore for await (const chunk of protocolStream) { chunks.push(decoder.decode(chunk, { stream: true })); } expect(chunks).toEqual( [ 'id: chat_1', 'event: text', 'data: "234"\n', 'id: chat_1', 'event: text', `data: "567890\\n"\n`, // stop 'id: chat_1', 'event: stop', `data: "STOP"\n`, // usage 'id: chat_1', 'event: usage', `data: {"inputTextTokens":19,"outputReasoningTokens":100,"outputTextTokens":11,"totalInputTokens":19,"totalOutputTokens":111,"totalTokens":131}\n`, ].map((i) => i + '\n'), ); }); });