@lobehub/chat
Version:
Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.
379 lines (325 loc) • 11.4 kB
text/typescript
import { EnhancedGenerateContentResponse } from '@google/generative-ai';
import { describe, expect, it, vi } from 'vitest';
import * as uuidModule from '@/utils/uuid';
import { GoogleGenerativeAIStream } from './google-ai';
describe('GoogleGenerativeAIStream', () => {
it('should transform Google Generative AI stream to protocol stream', async () => {
vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1');
const mockGenerateContentResponse = (text: string, functionCalls?: any[]) =>
({
text: () => text,
functionCall: () => functionCalls?.[0],
functionCalls: () => functionCalls,
}) as EnhancedGenerateContentResponse;
const mockGoogleStream = new ReadableStream({
start(controller) {
controller.enqueue(mockGenerateContentResponse('Hello'));
controller.enqueue(
mockGenerateContentResponse('', [{ name: 'testFunction', args: { arg1: 'value1' } }]),
);
controller.enqueue(mockGenerateContentResponse(' world!'));
controller.close();
},
});
const onStartMock = vi.fn();
const onTextMock = vi.fn();
const onToolCallMock = vi.fn();
const onCompletionMock = vi.fn();
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream, {
callbacks: {
onStart: onStartMock,
onText: onTextMock,
onToolsCalling: onToolCallMock,
onCompletion: onCompletionMock,
},
});
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual([
// text
'id: chat_1\n',
'event: text\n',
`data: "Hello"\n\n`,
// tool call
'id: chat_1\n',
'event: tool_calls\n',
`data: [{"function":{"arguments":"{\\"arg1\\":\\"value1\\"}","name":"testFunction"},"id":"testFunction_0","index":0,"type":"function"}]\n\n`,
// text
'id: chat_1\n',
'event: text\n',
`data: " world!"\n\n`,
]);
expect(onStartMock).toHaveBeenCalledTimes(1);
expect(onTextMock).toHaveBeenNthCalledWith(1, 'Hello');
expect(onTextMock).toHaveBeenNthCalledWith(2, ' world!');
expect(onToolCallMock).toHaveBeenCalledTimes(1);
expect(onCompletionMock).toHaveBeenCalledTimes(1);
});
it('should handle empty stream', async () => {
const mockGoogleStream = new ReadableStream({
start(controller) {
controller.close();
},
});
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream);
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual([]);
});
it('should handle image', async () => {
vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1');
const data = {
candidates: [
{
content: {
parts: [{ inlineData: { mimeType: 'image/png', data: 'iVBORw0KGgoAA' } }],
role: 'model',
},
index: 0,
},
],
usageMetadata: {
promptTokenCount: 6,
totalTokenCount: 6,
promptTokensDetails: [{ modality: 'TEXT', tokenCount: 6 }],
},
modelVersion: 'gemini-2.0-flash-exp',
};
const mockGenerateContentResponse = (text: string, functionCalls?: any[]) =>
({
text: () => text,
functionCall: () => functionCalls?.[0],
functionCalls: () => functionCalls,
}) as EnhancedGenerateContentResponse;
const mockGoogleStream = new ReadableStream({
start(controller) {
controller.enqueue(data);
controller.close();
},
});
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream);
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual([
// image
'id: chat_1\n',
'event: base64_image\n',
`data: ""\n\n`,
]);
});
it('should handle token count', async () => {
vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1');
const data = {
candidates: [{ content: { role: 'model' }, finishReason: 'STOP', index: 0 }],
usageMetadata: {
promptTokenCount: 266,
totalTokenCount: 266,
promptTokensDetails: [
{ modality: 'TEXT', tokenCount: 8 },
{ modality: 'IMAGE', tokenCount: 258 },
],
},
modelVersion: 'gemini-2.0-flash-exp',
};
const mockGoogleStream = new ReadableStream({
start(controller) {
controller.enqueue(data);
controller.close();
},
});
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream);
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual([
// stop
'id: chat_1\n',
'event: stop\n',
`data: "STOP"\n\n`,
// usage
'id: chat_1\n',
'event: usage\n',
`data: {"inputImageTokens":258,"inputTextTokens":8,"outputTextTokens":0,"totalInputTokens":266,"totalOutputTokens":0,"totalTokens":266}\n\n`,
]);
});
it('should handle stop with content', async () => {
vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1');
const data = [
{
candidates: [
{
content: { parts: [{ text: '234' }], role: 'model' },
safetyRatings: [
{ category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' },
],
},
],
text: () => '234',
usageMetadata: {
promptTokenCount: 20,
totalTokenCount: 20,
promptTokensDetails: [{ modality: 'TEXT', tokenCount: 20 }],
},
modelVersion: 'gemini-2.0-flash-exp-image-generation',
},
{
text: () => '567890\n',
candidates: [
{
content: { parts: [{ text: '567890\n' }], role: 'model' },
finishReason: 'STOP',
safetyRatings: [
{ category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' },
],
},
],
usageMetadata: {
promptTokenCount: 19,
candidatesTokenCount: 11,
totalTokenCount: 30,
promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }],
candidatesTokensDetails: [{ modality: 'TEXT', tokenCount: 11 }],
},
modelVersion: 'gemini-2.0-flash-exp-image-generation',
},
];
const mockGoogleStream = new ReadableStream({
start(controller) {
data.forEach((item) => {
controller.enqueue(item);
});
controller.close();
},
});
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream);
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual(
[
'id: chat_1',
'event: text',
'data: "234"\n',
'id: chat_1',
'event: text',
`data: "567890\\n"\n`,
// stop
'id: chat_1',
'event: stop',
`data: "STOP"\n`,
// usage
'id: chat_1',
'event: usage',
`data: {"inputTextTokens":19,"outputTextTokens":11,"totalInputTokens":19,"totalOutputTokens":11,"totalTokens":30}\n`,
].map((i) => i + '\n'),
);
});
it('should handle stop with content and thought', async () => {
vi.spyOn(uuidModule, 'nanoid').mockReturnValueOnce('1');
const data = [
{
candidates: [
{
content: { parts: [{ text: '234' }], role: 'model' },
safetyRatings: [
{ category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' },
],
},
],
text: () => '234',
usageMetadata: {
promptTokenCount: 19,
candidatesTokenCount: 3,
totalTokenCount: 122,
promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }],
thoughtsTokenCount: 100,
},
modelVersion: 'gemini-2.0-flash-exp-image-generation',
},
{
text: () => '567890\n',
candidates: [
{
content: { parts: [{ text: '567890\n' }], role: 'model' },
finishReason: 'STOP',
safetyRatings: [
{ category: 'HARM_CATEGORY_HATE_SPEECH', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_DANGEROUS_CONTENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
{ category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT', probability: 'NEGLIGIBLE' },
],
},
],
usageMetadata: {
promptTokenCount: 19,
candidatesTokenCount: 11,
totalTokenCount: 131,
promptTokensDetails: [{ modality: 'TEXT', tokenCount: 19 }],
candidatesTokensDetails: [{ modality: 'TEXT', tokenCount: 11 }],
thoughtsTokenCount: 100,
},
modelVersion: 'gemini-2.0-flash-exp-image-generation',
},
];
const mockGoogleStream = new ReadableStream({
start(controller) {
data.forEach((item) => {
controller.enqueue(item);
});
controller.close();
},
});
const protocolStream = GoogleGenerativeAIStream(mockGoogleStream);
const decoder = new TextDecoder();
const chunks = [];
// @ts-ignore
for await (const chunk of protocolStream) {
chunks.push(decoder.decode(chunk, { stream: true }));
}
expect(chunks).toEqual(
[
'id: chat_1',
'event: text',
'data: "234"\n',
'id: chat_1',
'event: text',
`data: "567890\\n"\n`,
// stop
'id: chat_1',
'event: stop',
`data: "STOP"\n`,
// usage
'id: chat_1',
'event: usage',
`data: {"inputTextTokens":19,"outputReasoningTokens":100,"outputTextTokens":11,"totalInputTokens":19,"totalOutputTokens":111,"totalTokens":131}\n`,
].map((i) => i + '\n'),
);
});
});