@lobehub/chat
Version:
Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.
122 lines (105 loc) • 3.65 kB
text/typescript
import OpenAI from 'openai';
import { disableStreamModels, systemToUserModels } from '@/const/models';
import { ChatStreamPayload, OpenAIChatMessage } from '@/libs/model-runtime';
import { imageUrlToBase64 } from '@/utils/imageToBase64';
import { parseDataUri } from './uriParser';
export const convertMessageContent = async (
content: OpenAI.ChatCompletionContentPart,
): Promise<OpenAI.ChatCompletionContentPart> => {
if (content.type === 'image_url') {
const { type } = parseDataUri(content.image_url.url);
if (type === 'url' && process.env.LLM_VISION_IMAGE_USE_BASE64 === '1') {
const { base64, mimeType } = await imageUrlToBase64(content.image_url.url);
return {
...content,
image_url: { ...content.image_url, url: `data:${mimeType};base64,${base64}` },
};
}
}
return content;
};
export const convertOpenAIMessages = async (messages: OpenAI.ChatCompletionMessageParam[]) => {
return (await Promise.all(
messages.map(async (message) => ({
...message,
content:
typeof message.content === 'string'
? message.content
: await Promise.all(
(message.content || []).map((c) =>
convertMessageContent(c as OpenAI.ChatCompletionContentPart),
),
),
})),
)) as OpenAI.ChatCompletionMessageParam[];
};
export const convertOpenAIResponseInputs = async (
messages: OpenAI.ChatCompletionMessageParam[],
) => {
let input: OpenAI.Responses.ResponseInputItem[] = [];
await Promise.all(
messages.map(async (message) => {
// if message is assistant messages with tool calls , transform it to function type item
if (message.role === 'assistant' && message.tool_calls && message.tool_calls?.length > 0) {
message.tool_calls?.forEach((tool) => {
input.push({
arguments: tool.function.name,
call_id: tool.id,
name: tool.function.name,
type: 'function_call',
});
});
return;
}
if (message.role === 'tool') {
input.push({
call_id: message.tool_call_id,
output: message.content,
type: 'function_call_output',
} as OpenAI.Responses.ResponseFunctionToolCallOutputItem);
return;
}
// default item
// also need handle image
const item = {
...message,
content:
typeof message.content === 'string'
? message.content
: await Promise.all(
(message.content || []).map(async (c) => {
if (c.type === 'text') {
return { ...c, type: 'input_text' };
}
const image = await convertMessageContent(c as OpenAI.ChatCompletionContentPart);
return {
image_url: (image as OpenAI.ChatCompletionContentPartImage).image_url?.url,
type: 'input_image',
};
}),
),
} as OpenAI.Responses.ResponseInputItem;
input.push(item);
}),
);
return input;
};
export const pruneReasoningPayload = (payload: ChatStreamPayload) => {
return {
...payload,
frequency_penalty: 0,
messages: payload.messages.map((message: OpenAIChatMessage) => ({
...message,
role:
message.role === 'system'
? systemToUserModels.has(payload.model)
? 'user'
: 'developer'
: message.role,
})),
presence_penalty: 0,
stream: !disableStreamModels.has(payload.model),
temperature: 1,
top_p: 1,
};
};