UNPKG

@lobehub/chat

Version:

Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.

291 lines (244 loc) 7.91 kB
import OpenAI from 'openai'; import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest'; import { imageUrlToBase64 } from '@/utils/imageToBase64'; import { convertMessageContent, convertOpenAIMessages, convertOpenAIResponseInputs, } from './openaiHelpers'; import { parseDataUri } from './uriParser'; // 模拟依赖 vi.mock('@/utils/imageToBase64'); vi.mock('./uriParser'); describe('convertMessageContent', () => { beforeEach(() => { vi.resetAllMocks(); }); afterEach(() => { vi.restoreAllMocks(); }); it('should return the same content if not image_url type', async () => { const content = { type: 'text', text: 'Hello' } as OpenAI.ChatCompletionContentPart; const result = await convertMessageContent(content); expect(result).toEqual(content); }); it('should convert image URL to base64 when necessary', async () => { // 设置环境变量 process.env.LLM_VISION_IMAGE_USE_BASE64 = '1'; const content = { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' }, } as OpenAI.ChatCompletionContentPart; vi.mocked(parseDataUri).mockReturnValue({ type: 'url', base64: null, mimeType: null }); vi.mocked(imageUrlToBase64).mockResolvedValue({ base64: 'base64String', mimeType: 'image/jpeg', }); const result = await convertMessageContent(content); expect(result).toEqual({ type: 'image_url', image_url: { url: '' }, }); expect(parseDataUri).toHaveBeenCalledWith('https://example.com/image.jpg'); expect(imageUrlToBase64).toHaveBeenCalledWith('https://example.com/image.jpg'); }); it('should not convert image URL when not necessary', async () => { process.env.LLM_VISION_IMAGE_USE_BASE64 = undefined; const content = { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' }, } as OpenAI.ChatCompletionContentPart; vi.mocked(parseDataUri).mockReturnValue({ type: 'url', base64: null, mimeType: null }); const result = await convertMessageContent(content); expect(result).toEqual(content); expect(imageUrlToBase64).not.toHaveBeenCalled(); }); }); describe('convertOpenAIMessages', () => { it('should convert string content messages', async () => { const messages = [ { role: 'user', content: 'Hello' }, { role: 'assistant', content: 'Hi there' }, ] as OpenAI.ChatCompletionMessageParam[]; const result = await convertOpenAIMessages(messages); expect(result).toEqual(messages); }); it('should convert array content messages', async () => { const messages = [ { role: 'user', content: [ { type: 'text', text: 'Hello' }, { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } }, ], }, ] as OpenAI.ChatCompletionMessageParam[]; vi.spyOn(Promise, 'all'); vi.mocked(parseDataUri).mockReturnValue({ type: 'url', base64: null, mimeType: null }); vi.mocked(imageUrlToBase64).mockResolvedValue({ base64: 'base64String', mimeType: 'image/jpeg', }); process.env.LLM_VISION_IMAGE_USE_BASE64 = '1'; const result = await convertOpenAIMessages(messages); expect(result).toEqual([ { role: 'user', content: [ { type: 'text', text: 'Hello' }, { type: 'image_url', image_url: { url: '' }, }, ], }, ]); expect(Promise.all).toHaveBeenCalledTimes(2); // 一次用于消息数组,一次用于内容数组 process.env.LLM_VISION_IMAGE_USE_BASE64 = undefined; }); it('should convert array content messages', async () => { const messages = [ { role: 'user', content: [ { type: 'text', text: 'Hello' }, { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } }, ], }, ] as OpenAI.ChatCompletionMessageParam[]; vi.spyOn(Promise, 'all'); vi.mocked(parseDataUri).mockReturnValue({ type: 'url', base64: null, mimeType: null }); vi.mocked(imageUrlToBase64).mockResolvedValue({ base64: 'base64String', mimeType: 'image/jpeg', }); const result = await convertOpenAIMessages(messages); expect(result).toEqual(messages); expect(Promise.all).toHaveBeenCalledTimes(2); // 一次用于消息数组,一次用于内容数组 }); }); describe('convertOpenAIResponseInputs', () => { it('应该正确转换普通文本消息', async () => { const messages: OpenAI.ChatCompletionMessageParam[] = [ { role: 'user', content: 'Hello' }, { role: 'assistant', content: 'Hi there!' }, ]; const result = await convertOpenAIResponseInputs(messages); expect(result).toEqual([ { role: 'user', content: 'Hello' }, { role: 'assistant', content: 'Hi there!' }, ]); }); it('应该正确转换带有工具调用的消息', async () => { const messages: OpenAI.ChatCompletionMessageParam[] = [ { role: 'assistant', content: '', tool_calls: [ { id: 'call_123', type: 'function', function: { name: 'test_function', arguments: '{"key": "value"}', }, }, ], }, ]; const result = await convertOpenAIResponseInputs(messages); expect(result).toEqual([ { arguments: 'test_function', call_id: 'call_123', name: 'test_function', type: 'function_call', }, ]); }); it('应该正确转换工具响应消息', async () => { const messages: OpenAI.ChatCompletionMessageParam[] = [ { role: 'tool', content: 'Function result', tool_call_id: 'call_123', }, ]; const result = await convertOpenAIResponseInputs(messages); expect(result).toEqual([ { call_id: 'call_123', output: 'Function result', type: 'function_call_output', }, ]); }); it('应该正确转换包含图片的消息', async () => { const messages: OpenAI.ChatCompletionMessageParam[] = [ { role: 'user', content: [ { type: 'text', text: 'Here is an image' }, { type: 'image_url', image_url: { url: '', }, }, ], }, ]; const result = await convertOpenAIResponseInputs(messages); expect(result).toEqual([ { role: 'user', content: [ { type: 'input_text', text: 'Here is an image' }, { type: 'input_image', image_url: '', }, ], }, ]); }); it('应该正确处理混合类型的消息序列', async () => { const messages: OpenAI.ChatCompletionMessageParam[] = [ { role: 'user', content: 'I need help with a function' }, { role: 'assistant', content: '', tool_calls: [ { id: 'call_456', type: 'function', function: { name: 'get_data', arguments: '{}', }, }, ], }, { role: 'tool', content: '{"result": "success"}', tool_call_id: 'call_456', }, ]; const result = await convertOpenAIResponseInputs(messages); expect(result).toEqual([ { role: 'user', content: 'I need help with a function' }, { arguments: 'get_data', call_id: 'call_456', name: 'get_data', type: 'function_call', }, { call_id: 'call_456', output: '{"result": "success"}', type: 'function_call_output', }, ]); }); });