UNPKG

@lobehub/chat

Version:

Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.

100 lines (82 loc) 3.47 kB
import { describe, expect, it } from 'vitest'; import { convertSenseNovaMessage } from './sensenovaHelpers'; describe('convertSenseNovaMessage', () => { it('should convert string content to text type array', () => { const content = 'Hello world'; const result = convertSenseNovaMessage(content); expect(result).toEqual([{ type: 'text', text: 'Hello world' }]); }); it('should handle array content with text type', () => { const content = [{ type: 'text', text: 'Hello world' }]; const result = convertSenseNovaMessage(content); expect(result).toEqual([{ type: 'text', text: 'Hello world' }]); }); it('should convert image_url with base64 format to image_base64', () => { const content = [ { type: 'image_url', image_url: { url: '' } }, ]; const result = convertSenseNovaMessage(content); expect(result).toEqual([{ type: 'image_base64', image_base64: 'ABCDEF123456' }]); }); it('should keep image_url format for non-base64 urls', () => { const content = [{ type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } }]; const result = convertSenseNovaMessage(content); expect(result).toEqual([{ type: 'image_url', image_url: 'https://example.com/image.jpg' }]); }); it('should handle mixed content types', () => { const content = [ { type: 'text', text: 'Hello world' }, { type: 'image_url', image_url: { url: '' } }, { type: 'image_url', image_url: { url: 'https://example.com/image.jpg' } }, ]; const result = convertSenseNovaMessage(content); expect(result).toEqual([ { type: 'text', text: 'Hello world' }, { type: 'image_base64', image_base64: 'ABCDEF123456' }, { type: 'image_url', image_url: 'https://example.com/image.jpg' }, ]); }); it('should filter out invalid items', () => { const content = [ { type: 'text', text: 'Hello world' }, { type: 'unknown', value: 'should be filtered' }, { type: 'image_url', image_url: { notUrl: 'missing url field' } }, ]; const result = convertSenseNovaMessage(content); expect(result).toEqual([{ type: 'text', text: 'Hello world' }]); }); it('should handle the example input format correctly', () => { const messages = [ { content: [ { content: 'Hi', role: 'user', }, { image_url: { detail: 'auto', url: '', }, type: 'image_url', }, ], role: 'user', }, ]; // This is simulating how you might use convertSenseNovaMessage with the example input // Note: The actual function only converts the content part, not the entire messages array const content = messages[0].content; // This is how the function would be expected to handle a mixed array like this // However, the actual test would need to be adjusted based on how your function // is intended to handle this specific format with nested content objects const result = convertSenseNovaMessage([ { type: 'text', text: 'Hi' }, { type: 'image_url', image_url: { url: '' } }, ]); expect(result).toEqual([ { type: 'text', text: 'Hi' }, { type: 'image_base64', image_base64: 'ABCDEF123456' }, ]); }); });