@lobehub/chat
Version:
Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.
338 lines (295 loc) • 15.1 kB
text/typescript
import OpenAI from 'openai';
import type { Stream } from 'openai/streaming';
import { ChatMessageError, CitationItem } from '@/types/message';
import { AgentRuntimeErrorType, ILobeAgentRuntimeErrorType } from '../../../error';
import { ChatStreamCallbacks } from '../../../types';
import { convertUsage } from '../../usageConverter';
import {
FIRST_CHUNK_ERROR_KEY,
StreamContext,
StreamProtocolChunk,
StreamProtocolToolCallChunk,
StreamToolCallChunkData,
convertIterableToStream,
createCallbacksTransformer,
createFirstErrorHandleTransformer,
createSSEProtocolTransformer,
createTokenSpeedCalculator,
generateToolCallId,
} from '../protocol';
const transformOpenAIStream = (
chunk: OpenAI.ChatCompletionChunk,
streamContext: StreamContext,
): StreamProtocolChunk | StreamProtocolChunk[] => {
// handle the first chunk error
if (FIRST_CHUNK_ERROR_KEY in chunk) {
delete chunk[FIRST_CHUNK_ERROR_KEY];
// @ts-ignore
delete chunk['name'];
// @ts-ignore
delete chunk['stack'];
const errorData = {
body: chunk,
type: 'errorType' in chunk ? chunk.errorType : AgentRuntimeErrorType.ProviderBizError,
} as ChatMessageError;
return { data: errorData, id: 'first_chunk_error', type: 'error' };
}
try {
// maybe need another structure to add support for multiple choices
const item = chunk.choices[0];
if (!item) {
if (chunk.usage) {
const usage = chunk.usage;
return { data: convertUsage(usage), id: chunk.id, type: 'usage' };
}
return { data: chunk, id: chunk.id, type: 'data' };
}
if (item && typeof item.delta?.tool_calls === 'object' && item.delta.tool_calls?.length > 0) {
// tools calling
const tool_calls = item.delta.tool_calls.filter(
(value) => value.index >= 0 || typeof value.index === 'undefined',
);
if (tool_calls.length > 0) {
return {
data: item.delta.tool_calls.map((value, index): StreamToolCallChunkData => {
if (streamContext && !streamContext.tool) {
streamContext.tool = {
id: value.id!,
index: value.index,
name: value.function!.name!,
};
}
return {
function: {
arguments: value.function?.arguments ?? '',
name: value.function?.name ?? null,
},
id:
value.id ||
streamContext?.tool?.id ||
generateToolCallId(index, value.function?.name),
// mistral's tool calling don't have index and function field, it's data like:
// [{"id":"xbhnmTtY7","function":{"name":"lobe-image-designer____text2image____builtin","arguments":"{\"prompts\": [\"A photo of a small, fluffy dog with a playful expression and wagging tail.\", \"A watercolor painting of a small, energetic dog with a glossy coat and bright eyes.\", \"A vector illustration of a small, adorable dog with a short snout and perky ears.\", \"A drawing of a small, scruffy dog with a mischievous grin and a wagging tail.\"], \"quality\": \"standard\", \"seeds\": [123456, 654321, 111222, 333444], \"size\": \"1024x1024\", \"style\": \"vivid\"}"}}]
// minimax's tool calling don't have index field, it's data like:
// [{"id":"call_function_4752059746","type":"function","function":{"name":"lobe-image-designer____text2image____builtin","arguments":"{\"prompts\": [\"一个流浪的地球,背景是浩瀚"}}]
// so we need to add these default values
index: typeof value.index !== 'undefined' ? value.index : index,
type: value.type || 'function',
};
}),
id: chunk.id,
type: 'tool_calls',
} as StreamProtocolToolCallChunk;
}
}
// 给定结束原因
if (item.finish_reason) {
// one-api 的流式接口,会出现既有 finish_reason ,也有 content 的情况
// {"id":"demo","model":"deepl-en","choices":[{"index":0,"delta":{"role":"assistant","content":"Introduce yourself."},"finish_reason":"stop"}]}
if (typeof item.delta?.content === 'string' && !!item.delta.content) {
// MiniMax 内建搜索功能会在第一个 tools 流中 content 返回引用源,需要忽略
// {"id":"0483748a25071c611e2f48d2982fbe96","choices":[{"finish_reason":"stop","index":0,"delta":{"content":"[{\"no\":1,\"url\":\"https://www.xiaohongshu.com/discovery/item/66d8de3c000000001f01e752\",\"title\":\"郑钦文为国而战,没有理由不坚持🏅\",\"content\":\"·2024年08月03日\\n中国队选手郑钦文夺得巴黎奥运会网球女单比赛金牌(巴黎奥运第16金)\\n#巴黎奥运会[话题]# #郑钦文[话题]# #人物素材积累[话题]# #作文素材积累[话题]# #申论素材[话题]#\",\"web_icon\":\"https://www.xiaohongshu.com/favicon.ico\"}]","role":"tool","tool_call_id":"call_function_6696730535"}}],"created":1748255114,"model":"abab6.5s-chat","object":"chat.completion.chunk","usage":{"total_tokens":0,"total_characters":0},"input_sensitive":false,"output_sensitive":false,"input_sensitive_type":0,"output_sensitive_type":0,"output_sensitive_int":0}
if (typeof item.delta?.role === 'string' && item.delta.role === 'tool') {
return { data: null, id: chunk.id, type: 'text' };
}
return { data: item.delta.content, id: chunk.id, type: 'text' };
}
// OpenAI Search Preview 模型返回引用源
// {"id":"chatcmpl-18037d13-243c-4941-8b05-9530b352cf17","object":"chat.completion.chunk","created":1748351805,"model":"gpt-4o-mini-search-preview-2025-03-11","choices":[{"index":0,"delta":{"annotations":[{"type":"url_citation","url_citation":{"url":"https://zh.wikipedia.org/wiki/%E4%B8%8A%E6%B5%B7%E4%B9%90%E9%AB%98%E4%B9%90%E5%9B%AD?utm_source=openai","title":"上海乐高乐园","start_index":75,"end_index":199}}]},"finish_reason":"stop"}],"service_tier":"default"}
if ((item as any).delta?.annotations && (item as any).delta.annotations.length > 0) {
const citations = (item as any).delta.annotations;
return [
{
data: {
citations: citations.map(
(item: any) =>
({
title: item.url_citation.title,
url: item.url_citation.url,
}) as CitationItem,
),
},
id: chunk.id,
type: 'grounding',
},
];
}
// MiniMax 内建搜索功能会在最后一个流中的 message 数组中返回 4 个 Object,其中最后一个为 annotations
// {"id":"0483bf14ba55225a66de2342a21b4003","choices":[{"finish_reason":"tool_calls","index":0,"messages":[{"content":"","role":"user","reasoning_content":""},{"content":"","role":"assistant","tool_calls":[{"id":"call_function_0872338692","type":"web_search","function":{"name":"get_search_result","arguments":"{\"query_tag\":[\"天气\"],\"query_list\":[\"上海 2025年5月26日 天气\"]}"}}],"reasoning_content":""},{"content":"","role":"tool","tool_call_id":"call_function_0872338692","reasoning_content":""},{"content":"","role":"assistant","name":"海螺AI","annotations":[{"text":"【5†source】","url":"https://mtianqi.eastday.com/tianqi/shanghai/20250526.html","quote":"上海天气预报提供上海2025年05月26日天气"}],"audio_content":"","reasoning_content":""}]}],"created":1748274196,"model":"MiniMax-Text-01","object":"chat.completion","usage":{"total_tokens":13110,"total_characters":0,"prompt_tokens":12938,"completion_tokens":172},"base_resp":{"status_code":0,"status_msg":"Invalid parameters detected, json: unknown field \"user\""}}
if ((item as any).messages && (item as any).messages.length > 0) {
const citations = (item as any).messages.at(-1).annotations;
return [
{
data: {
citations: citations.map(
(item: any) =>
({
title: item.url,
url: item.url,
}) as CitationItem,
),
},
id: chunk.id,
type: 'grounding',
},
];
}
if (chunk.usage) {
const usage = chunk.usage;
return { data: convertUsage(usage), id: chunk.id, type: 'usage' };
}
// xAI Live Search 功能返回引用源
// {"id":"8721eebb-6465-4c47-ba2e-8e2ec0f97055","object":"chat.completion.chunk","created":1747809109,"model":"grok-3","choices":[{"index":0,"delta":{"role":"assistant"},"finish_reason":"stop"}],"system_fingerprint":"fp_1affcf9872","citations":["https://world.huanqiu.com/"]}
if ((chunk as any).citations) {
const citations = (chunk as any).citations;
return [
{
data: {
citations: citations.map(
(item: any) =>
({
title: item,
url: item,
}) as CitationItem,
),
},
id: chunk.id,
type: 'grounding',
},
];
}
return { data: item.finish_reason, id: chunk.id, type: 'stop' };
}
if (item.delta) {
let reasoning_content = (() => {
if ('reasoning_content' in item.delta) return item.delta.reasoning_content;
if ('reasoning' in item.delta) return item.delta.reasoning;
return null;
})();
let content = 'content' in item.delta ? item.delta.content : null;
// DeepSeek reasoner will put thinking in the reasoning_content field
// litellm and not set content = null when processing reasoning content
// en: siliconflow and aliyun bailian has encountered a situation where both content and reasoning_content are present, so need to handle it
// refs: https://github.com/lobehub/lobe-chat/issues/5681 (siliconflow)
// refs: https://github.com/lobehub/lobe-chat/issues/5956 (aliyun bailian)
if (typeof content === 'string' && typeof reasoning_content === 'string') {
if (content === '' && reasoning_content === '') {
content = null;
} else if (reasoning_content === '') {
reasoning_content = null;
}
}
if (typeof reasoning_content === 'string') {
return { data: reasoning_content, id: chunk.id, type: 'reasoning' };
}
if (typeof content === 'string') {
// 清除 <think> 及 </think> 标签
const thinkingContent = content.replaceAll(/<\/?think>/g, '');
// 判断是否有 <think> 或 </think> 标签,更新 thinkingInContent 状态
if (content.includes('<think>')) {
streamContext.thinkingInContent = true;
} else if (content.includes('</think>')) {
streamContext.thinkingInContent = false;
}
// 判断是否有 citations 内容,更新 returnedCitation 状态
if (!streamContext?.returnedCitation) {
const citations =
// in Perplexity api, the citation is in every chunk, but we only need to return it once
('citations' in chunk && chunk.citations) ||
// in Hunyuan api, the citation is in every chunk
('search_info' in chunk && (chunk.search_info as any)?.search_results) ||
// in Wenxin api, the citation is in the first and last chunk
('search_results' in chunk && chunk.search_results) ||
// in Zhipu api, the citation is in the first chunk
('web_search' in chunk && chunk.web_search);
if (citations) {
streamContext.returnedCitation = true;
return [
{
data: {
citations: (citations as any[])
.map((item) => ({
title: typeof item === 'string' ? item : item.title,
url: typeof item === 'string' ? item : item.url || item.link,
}))
.filter((c) => c.title && c.url), // Zhipu 内建搜索工具有时会返回空 link 引发程序崩溃
},
id: chunk.id,
type: 'grounding',
},
{
data: thinkingContent,
id: chunk.id,
type: streamContext?.thinkingInContent ? 'reasoning' : 'text',
},
];
}
}
// 根据当前思考模式确定返回类型
return {
data: thinkingContent,
id: chunk.id,
type: streamContext?.thinkingInContent ? 'reasoning' : 'text',
};
}
}
// 无内容情况
if (item.delta && item.delta.content === null) {
return { data: item.delta, id: chunk.id, type: 'data' };
}
// litellm 的返回结果中,存在 delta 为空,但是有 usage 的情况
if (chunk.usage) {
const usage = chunk.usage;
return { data: convertUsage(usage), id: chunk.id, type: 'usage' };
}
// 其余情况下,返回 delta 和 index
return {
data: { delta: item.delta, id: chunk.id, index: item.index },
id: chunk.id,
type: 'data',
};
} catch (e) {
const errorName = 'StreamChunkError';
console.error(`[${errorName}]`, e);
console.error(`[${errorName}] raw chunk:`, chunk);
const err = e as Error;
/* eslint-disable sort-keys-fix/sort-keys-fix */
const errorData = {
body: {
message:
'chat response streaming chunk parse error, please contact your API Provider to fix it.',
context: { error: { message: err.message, name: err.name }, chunk },
},
type: errorName,
} as ChatMessageError;
/* eslint-enable */
return { data: errorData, id: chunk.id, type: 'error' };
}
};
export interface OpenAIStreamOptions {
bizErrorTypeTransformer?: (error: {
message: string;
name: string;
}) => ILobeAgentRuntimeErrorType | undefined;
callbacks?: ChatStreamCallbacks;
inputStartAt?: number;
provider?: string;
}
export const OpenAIStream = (
stream: Stream<OpenAI.ChatCompletionChunk> | ReadableStream,
{ callbacks, provider, bizErrorTypeTransformer, inputStartAt }: OpenAIStreamOptions = {},
) => {
const streamStack: StreamContext = { id: '' };
const readableStream =
stream instanceof ReadableStream ? stream : convertIterableToStream(stream);
return (
readableStream
// 1. handle the first error if exist
// provider like huggingface or minimax will return error in the stream,
// so in the first Transformer, we need to handle the error
.pipeThrough(createFirstErrorHandleTransformer(bizErrorTypeTransformer, provider))
.pipeThrough(createTokenSpeedCalculator(transformOpenAIStream, { inputStartAt, streamStack }))
.pipeThrough(createSSEProtocolTransformer((c) => c, streamStack))
.pipeThrough(createCallbacksTransformer(callbacks))
);
};