UNPKG

@lobehub/chat

Version:

Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.

338 lines (295 loc) 15.1 kB
import OpenAI from 'openai'; import type { Stream } from 'openai/streaming'; import { ChatMessageError, CitationItem } from '@/types/message'; import { AgentRuntimeErrorType, ILobeAgentRuntimeErrorType } from '../../../error'; import { ChatStreamCallbacks } from '../../../types'; import { convertUsage } from '../../usageConverter'; import { FIRST_CHUNK_ERROR_KEY, StreamContext, StreamProtocolChunk, StreamProtocolToolCallChunk, StreamToolCallChunkData, convertIterableToStream, createCallbacksTransformer, createFirstErrorHandleTransformer, createSSEProtocolTransformer, createTokenSpeedCalculator, generateToolCallId, } from '../protocol'; const transformOpenAIStream = ( chunk: OpenAI.ChatCompletionChunk, streamContext: StreamContext, ): StreamProtocolChunk | StreamProtocolChunk[] => { // handle the first chunk error if (FIRST_CHUNK_ERROR_KEY in chunk) { delete chunk[FIRST_CHUNK_ERROR_KEY]; // @ts-ignore delete chunk['name']; // @ts-ignore delete chunk['stack']; const errorData = { body: chunk, type: 'errorType' in chunk ? chunk.errorType : AgentRuntimeErrorType.ProviderBizError, } as ChatMessageError; return { data: errorData, id: 'first_chunk_error', type: 'error' }; } try { // maybe need another structure to add support for multiple choices const item = chunk.choices[0]; if (!item) { if (chunk.usage) { const usage = chunk.usage; return { data: convertUsage(usage), id: chunk.id, type: 'usage' }; } return { data: chunk, id: chunk.id, type: 'data' }; } if (item && typeof item.delta?.tool_calls === 'object' && item.delta.tool_calls?.length > 0) { // tools calling const tool_calls = item.delta.tool_calls.filter( (value) => value.index >= 0 || typeof value.index === 'undefined', ); if (tool_calls.length > 0) { return { data: item.delta.tool_calls.map((value, index): StreamToolCallChunkData => { if (streamContext && !streamContext.tool) { streamContext.tool = { id: value.id!, index: value.index, name: value.function!.name!, }; } return { function: { arguments: value.function?.arguments ?? '', name: value.function?.name ?? null, }, id: value.id || streamContext?.tool?.id || generateToolCallId(index, value.function?.name), // mistral's tool calling don't have index and function field, it's data like: // [{"id":"xbhnmTtY7","function":{"name":"lobe-image-designer____text2image____builtin","arguments":"{\"prompts\": [\"A photo of a small, fluffy dog with a playful expression and wagging tail.\", \"A watercolor painting of a small, energetic dog with a glossy coat and bright eyes.\", \"A vector illustration of a small, adorable dog with a short snout and perky ears.\", \"A drawing of a small, scruffy dog with a mischievous grin and a wagging tail.\"], \"quality\": \"standard\", \"seeds\": [123456, 654321, 111222, 333444], \"size\": \"1024x1024\", \"style\": \"vivid\"}"}}] // minimax's tool calling don't have index field, it's data like: // [{"id":"call_function_4752059746","type":"function","function":{"name":"lobe-image-designer____text2image____builtin","arguments":"{\"prompts\": [\"一个流浪的地球,背景是浩瀚"}}] // so we need to add these default values index: typeof value.index !== 'undefined' ? value.index : index, type: value.type || 'function', }; }), id: chunk.id, type: 'tool_calls', } as StreamProtocolToolCallChunk; } } // 给定结束原因 if (item.finish_reason) { // one-api 的流式接口,会出现既有 finish_reason ,也有 content 的情况 // {"id":"demo","model":"deepl-en","choices":[{"index":0,"delta":{"role":"assistant","content":"Introduce yourself."},"finish_reason":"stop"}]} if (typeof item.delta?.content === 'string' && !!item.delta.content) { // MiniMax 内建搜索功能会在第一个 tools 流中 content 返回引用源,需要忽略 // {"id":"0483748a25071c611e2f48d2982fbe96","choices":[{"finish_reason":"stop","index":0,"delta":{"content":"[{\"no\":1,\"url\":\"https://www.xiaohongshu.com/discovery/item/66d8de3c000000001f01e752\",\"title\":\"郑钦文为国而战,没有理由不坚持🏅\",\"content\":\"·2024年08月03日\\n中国队选手郑钦文夺得巴黎奥运会网球女单比赛金牌(巴黎奥运第16金)\\n#巴黎奥运会[话题]# #郑钦文[话题]# #人物素材积累[话题]# #作文素材积累[话题]# #申论素材[话题]#\",\"web_icon\":\"https://www.xiaohongshu.com/favicon.ico\"}]","role":"tool","tool_call_id":"call_function_6696730535"}}],"created":1748255114,"model":"abab6.5s-chat","object":"chat.completion.chunk","usage":{"total_tokens":0,"total_characters":0},"input_sensitive":false,"output_sensitive":false,"input_sensitive_type":0,"output_sensitive_type":0,"output_sensitive_int":0} if (typeof item.delta?.role === 'string' && item.delta.role === 'tool') { return { data: null, id: chunk.id, type: 'text' }; } return { data: item.delta.content, id: chunk.id, type: 'text' }; } // OpenAI Search Preview 模型返回引用源 // {"id":"chatcmpl-18037d13-243c-4941-8b05-9530b352cf17","object":"chat.completion.chunk","created":1748351805,"model":"gpt-4o-mini-search-preview-2025-03-11","choices":[{"index":0,"delta":{"annotations":[{"type":"url_citation","url_citation":{"url":"https://zh.wikipedia.org/wiki/%E4%B8%8A%E6%B5%B7%E4%B9%90%E9%AB%98%E4%B9%90%E5%9B%AD?utm_source=openai","title":"上海乐高乐园","start_index":75,"end_index":199}}]},"finish_reason":"stop"}],"service_tier":"default"} if ((item as any).delta?.annotations && (item as any).delta.annotations.length > 0) { const citations = (item as any).delta.annotations; return [ { data: { citations: citations.map( (item: any) => ({ title: item.url_citation.title, url: item.url_citation.url, }) as CitationItem, ), }, id: chunk.id, type: 'grounding', }, ]; } // MiniMax 内建搜索功能会在最后一个流中的 message 数组中返回 4 个 Object,其中最后一个为 annotations // {"id":"0483bf14ba55225a66de2342a21b4003","choices":[{"finish_reason":"tool_calls","index":0,"messages":[{"content":"","role":"user","reasoning_content":""},{"content":"","role":"assistant","tool_calls":[{"id":"call_function_0872338692","type":"web_search","function":{"name":"get_search_result","arguments":"{\"query_tag\":[\"天气\"],\"query_list\":[\"上海 2025年5月26日 天气\"]}"}}],"reasoning_content":""},{"content":"","role":"tool","tool_call_id":"call_function_0872338692","reasoning_content":""},{"content":"","role":"assistant","name":"海螺AI","annotations":[{"text":"【5†source】","url":"https://mtianqi.eastday.com/tianqi/shanghai/20250526.html","quote":"上海天气预报提供上海2025年05月26日天气"}],"audio_content":"","reasoning_content":""}]}],"created":1748274196,"model":"MiniMax-Text-01","object":"chat.completion","usage":{"total_tokens":13110,"total_characters":0,"prompt_tokens":12938,"completion_tokens":172},"base_resp":{"status_code":0,"status_msg":"Invalid parameters detected, json: unknown field \"user\""}} if ((item as any).messages && (item as any).messages.length > 0) { const citations = (item as any).messages.at(-1).annotations; return [ { data: { citations: citations.map( (item: any) => ({ title: item.url, url: item.url, }) as CitationItem, ), }, id: chunk.id, type: 'grounding', }, ]; } if (chunk.usage) { const usage = chunk.usage; return { data: convertUsage(usage), id: chunk.id, type: 'usage' }; } // xAI Live Search 功能返回引用源 // {"id":"8721eebb-6465-4c47-ba2e-8e2ec0f97055","object":"chat.completion.chunk","created":1747809109,"model":"grok-3","choices":[{"index":0,"delta":{"role":"assistant"},"finish_reason":"stop"}],"system_fingerprint":"fp_1affcf9872","citations":["https://world.huanqiu.com/"]} if ((chunk as any).citations) { const citations = (chunk as any).citations; return [ { data: { citations: citations.map( (item: any) => ({ title: item, url: item, }) as CitationItem, ), }, id: chunk.id, type: 'grounding', }, ]; } return { data: item.finish_reason, id: chunk.id, type: 'stop' }; } if (item.delta) { let reasoning_content = (() => { if ('reasoning_content' in item.delta) return item.delta.reasoning_content; if ('reasoning' in item.delta) return item.delta.reasoning; return null; })(); let content = 'content' in item.delta ? item.delta.content : null; // DeepSeek reasoner will put thinking in the reasoning_content field // litellm and not set content = null when processing reasoning content // en: siliconflow and aliyun bailian has encountered a situation where both content and reasoning_content are present, so need to handle it // refs: https://github.com/lobehub/lobe-chat/issues/5681 (siliconflow) // refs: https://github.com/lobehub/lobe-chat/issues/5956 (aliyun bailian) if (typeof content === 'string' && typeof reasoning_content === 'string') { if (content === '' && reasoning_content === '') { content = null; } else if (reasoning_content === '') { reasoning_content = null; } } if (typeof reasoning_content === 'string') { return { data: reasoning_content, id: chunk.id, type: 'reasoning' }; } if (typeof content === 'string') { // 清除 <think> 及 </think> 标签 const thinkingContent = content.replaceAll(/<\/?think>/g, ''); // 判断是否有 <think> 或 </think> 标签,更新 thinkingInContent 状态 if (content.includes('<think>')) { streamContext.thinkingInContent = true; } else if (content.includes('</think>')) { streamContext.thinkingInContent = false; } // 判断是否有 citations 内容,更新 returnedCitation 状态 if (!streamContext?.returnedCitation) { const citations = // in Perplexity api, the citation is in every chunk, but we only need to return it once ('citations' in chunk && chunk.citations) || // in Hunyuan api, the citation is in every chunk ('search_info' in chunk && (chunk.search_info as any)?.search_results) || // in Wenxin api, the citation is in the first and last chunk ('search_results' in chunk && chunk.search_results) || // in Zhipu api, the citation is in the first chunk ('web_search' in chunk && chunk.web_search); if (citations) { streamContext.returnedCitation = true; return [ { data: { citations: (citations as any[]) .map((item) => ({ title: typeof item === 'string' ? item : item.title, url: typeof item === 'string' ? item : item.url || item.link, })) .filter((c) => c.title && c.url), // Zhipu 内建搜索工具有时会返回空 link 引发程序崩溃 }, id: chunk.id, type: 'grounding', }, { data: thinkingContent, id: chunk.id, type: streamContext?.thinkingInContent ? 'reasoning' : 'text', }, ]; } } // 根据当前思考模式确定返回类型 return { data: thinkingContent, id: chunk.id, type: streamContext?.thinkingInContent ? 'reasoning' : 'text', }; } } // 无内容情况 if (item.delta && item.delta.content === null) { return { data: item.delta, id: chunk.id, type: 'data' }; } // litellm 的返回结果中,存在 delta 为空,但是有 usage 的情况 if (chunk.usage) { const usage = chunk.usage; return { data: convertUsage(usage), id: chunk.id, type: 'usage' }; } // 其余情况下,返回 delta 和 index return { data: { delta: item.delta, id: chunk.id, index: item.index }, id: chunk.id, type: 'data', }; } catch (e) { const errorName = 'StreamChunkError'; console.error(`[${errorName}]`, e); console.error(`[${errorName}] raw chunk:`, chunk); const err = e as Error; /* eslint-disable sort-keys-fix/sort-keys-fix */ const errorData = { body: { message: 'chat response streaming chunk parse error, please contact your API Provider to fix it.', context: { error: { message: err.message, name: err.name }, chunk }, }, type: errorName, } as ChatMessageError; /* eslint-enable */ return { data: errorData, id: chunk.id, type: 'error' }; } }; export interface OpenAIStreamOptions { bizErrorTypeTransformer?: (error: { message: string; name: string; }) => ILobeAgentRuntimeErrorType | undefined; callbacks?: ChatStreamCallbacks; inputStartAt?: number; provider?: string; } export const OpenAIStream = ( stream: Stream<OpenAI.ChatCompletionChunk> | ReadableStream, { callbacks, provider, bizErrorTypeTransformer, inputStartAt }: OpenAIStreamOptions = {}, ) => { const streamStack: StreamContext = { id: '' }; const readableStream = stream instanceof ReadableStream ? stream : convertIterableToStream(stream); return ( readableStream // 1. handle the first error if exist // provider like huggingface or minimax will return error in the stream, // so in the first Transformer, we need to handle the error .pipeThrough(createFirstErrorHandleTransformer(bizErrorTypeTransformer, provider)) .pipeThrough(createTokenSpeedCalculator(transformOpenAIStream, { inputStartAt, streamStack })) .pipeThrough(createSSEProtocolTransformer((c) => c, streamStack)) .pipeThrough(createCallbacksTransformer(callbacks)) ); };