UNPKG

@llumiverse/drivers

Version:

LLM driver implementations. Currently supported are: openai, huggingface, bedrock, replicate.

383 lines 17.4 kB
import { AnthropicVertex } from "@anthropic-ai/vertex-sdk"; import { PredictionServiceClient, v1beta1 } from "@google-cloud/aiplatform"; import { GoogleGenAI } from "@google/genai"; import { AbstractDriver, Modalities, getModelCapabilities, modelModalitiesToArray, } from "@llumiverse/core"; import { FetchClient } from "@vertesia/api-fetch-client"; import { GoogleAuth } from "google-auth-library"; import { getEmbeddingsForImages } from "./embeddings/embeddings-image.js"; import { getEmbeddingsForText } from "./embeddings/embeddings-text.js"; import { getModelDefinition } from "./models.js"; import { ANTHROPIC_REGIONS, NON_GLOBAL_ANTHROPIC_MODELS } from "./models/claude.js"; import { ImagenModelDefinition } from "./models/imagen.js"; export function trimModelName(model) { const i = model.lastIndexOf("@"); return i > -1 ? model.substring(0, i) : model; } export class VertexAIDriver extends AbstractDriver { static PROVIDER = "vertexai"; provider = VertexAIDriver.PROVIDER; aiplatform; anthropicClient; fetchClient; googleGenAI; llamaClient; modelGarden; imagenClient; googleAuth; authClientPromise; constructor(options) { super(options); this.aiplatform = undefined; this.anthropicClient = undefined; this.fetchClient = undefined; this.googleGenAI = undefined; this.modelGarden = undefined; this.llamaClient = undefined; this.imagenClient = undefined; this.googleAuth = new GoogleAuth(options.googleAuthOptions); this.authClientPromise = undefined; } async getAuthClient() { if (!this.authClientPromise) { this.authClientPromise = this.googleAuth.getClient(); } return this.authClientPromise; } getGoogleGenAIClient(region = this.options.region) { //Lazy initialization if (region !== this.options.region) { //Get one off client for different region return new GoogleGenAI({ project: this.options.project, location: region, vertexai: true, googleAuthOptions: this.options.googleAuthOptions || { scopes: ["https://www.googleapis.com/auth/cloud-platform"], } }); } if (!this.googleGenAI) { this.googleGenAI = new GoogleGenAI({ project: this.options.project, location: region, vertexai: true, googleAuthOptions: this.options.googleAuthOptions || { scopes: ["https://www.googleapis.com/auth/cloud-platform"], } }); } return this.googleGenAI; } getFetchClient() { //Lazy initialization if (!this.fetchClient) { this.fetchClient = createFetchClient({ region: this.options.region, project: this.options.project, }).withAuthCallback(async () => { const token = await this.googleAuth.getAccessToken(); return `Bearer ${token}`; }); } return this.fetchClient; } getLLamaClient(region = "us-central1") { //Lazy initialization if (!this.llamaClient || this.llamaClient["region"] !== region) { this.llamaClient = createFetchClient({ region: region, project: this.options.project, apiVersion: "v1beta1", }).withAuthCallback(async () => { const token = await this.googleAuth.getAccessToken(); return `Bearer ${token}`; }); // Store the region for potential client reuse this.llamaClient["region"] = region; } return this.llamaClient; } async getAnthropicClient(region = this.options.region) { // Extract region prefix and map if it exists in ANTHROPIC_REGIONS, otherwise use as-is const getRegionPrefix = (r) => r.split('-')[0]; const regionPrefix = getRegionPrefix(region); const mappedRegion = ANTHROPIC_REGIONS[regionPrefix] || region; const defaultRegionPrefix = getRegionPrefix(this.options.region); const defaultMappedRegion = ANTHROPIC_REGIONS[defaultRegionPrefix] || this.options.region; // Get auth client to avoid version mismatch with GoogleAuth generic types const authClient = await this.getAuthClient(); // If mapped region is different from default mapped region, create one-off client if (mappedRegion !== defaultMappedRegion) { return new AnthropicVertex({ timeout: 20 * 60 * 10000, // Set to 20 minutes, 10 minute default, setting this disables long request error: https://github.com/anthropics/anthropic-sdk-typescript?#long-requests region: mappedRegion, projectId: this.options.project, authClient, }); } //Lazy initialization for default region if (!this.anthropicClient) { this.anthropicClient = new AnthropicVertex({ timeout: 20 * 60 * 10000, // Set to 20 minutes, 10 minute default, setting this disables long request error: https://github.com/anthropics/anthropic-sdk-typescript?#long-requests region: mappedRegion, projectId: this.options.project, authClient, }); } return this.anthropicClient; } async getAIPlatformClient() { //Lazy initialization if (!this.aiplatform) { const authClient = await this.getAuthClient(); this.aiplatform = new v1beta1.ModelServiceClient({ projectId: this.options.project, apiEndpoint: `${this.options.region}-${API_BASE_PATH}`, authClient, }); } return this.aiplatform; } async getModelGardenClient() { //Lazy initialization if (!this.modelGarden) { const authClient = await this.getAuthClient(); this.modelGarden = new v1beta1.ModelGardenServiceClient({ projectId: this.options.project, apiEndpoint: `${this.options.region}-${API_BASE_PATH}`, authClient, }); } return this.modelGarden; } async getImagenClient() { //Lazy initialization if (!this.imagenClient) { // TODO: make location configurable, fixed to us-central1 for now const authClient = await this.getAuthClient(); this.imagenClient = new PredictionServiceClient({ projectId: this.options.project, apiEndpoint: `us-central1-${API_BASE_PATH}`, authClient, }); } return this.imagenClient; } validateResult(result, options) { // Optionally preprocess the result before validation const modelDef = getModelDefinition(options.model); if (typeof modelDef.preValidationProcessing === "function") { const processed = modelDef.preValidationProcessing(result, options); result = processed.result; options = processed.options; } super.validateResult(result, options); } canStream(options) { if (options.output_modality == Modalities.image) { return Promise.resolve(false); } return Promise.resolve(getModelDefinition(options.model).model.can_stream === true); } createPrompt(segments, options) { if (options.model.includes("imagen")) { return new ImagenModelDefinition(options.model).createPrompt(this, segments, options); } return getModelDefinition(options.model).createPrompt(this, segments, options); } async requestTextCompletion(prompt, options) { return getModelDefinition(options.model).requestTextCompletion(this, prompt, options); } async requestTextCompletionStream(prompt, options) { return getModelDefinition(options.model).requestTextCompletionStream(this, prompt, options); } async requestImageGeneration(_prompt, _options) { const splits = _options.model.split("/"); const modelName = trimModelName(splits[splits.length - 1]); return new ImagenModelDefinition(modelName).requestImageGeneration(this, _prompt, _options); } async getGenAIModelsArray(client) { const models = []; const pager = await client.models.list(); for await (const item of pager) { models.push(item); } return models; } async listModels(_params) { // Get clients const modelGarden = await this.getModelGardenClient(); const aiplatform = await this.getAIPlatformClient(); const globalGenAiClient = this.getGoogleGenAIClient("global"); let models = []; //Model Garden Publisher models - Pretrained models const publishers = ["google", "anthropic", "meta"]; // Meta "maas" models are LLama Models-As-A-Service. Non-maas models are not pre-deployed. const supportedModels = { google: ["gemini", "imagen"], anthropic: ["claude"], meta: ["maas"] }; // Additional models not in the listings, but we want to include // TODO: Remove once the models are available in the listing API, or no longer needed const additionalModels = { google: [ "imagen-3.0-fast-generate-001", ], anthropic: [], meta: [ "llama-4-maverick-17b-128e-instruct-maas", "llama-4-scout-17b-16e-instruct-maas", "llama-3.3-70b-instruct-maas", "llama-3.2-90b-vision-instruct-maas", "llama-3.1-405b-instruct-maas", "llama-3.1-70b-instruct-maas", "llama-3.1-8b-instruct-maas", ], }; //Used to exclude retired models that are still in the listing API but not available for use. //Or models we do not support yet const unsupportedModelsByPublisher = { google: ["gemini-pro", "gemini-ultra", "imagen-product-recontext-preview", "embedding"], anthropic: [], meta: [], }; // Start all network requests in parallel const aiplatformPromise = aiplatform.listModels({ parent: `projects/${this.options.project}/locations/${this.options.region}`, }); const publisherPromises = publishers.map(async (publisher) => { const [response] = await modelGarden.listPublisherModels({ parent: `publishers/${publisher}`, orderBy: "name", listAllVersions: true, }); return { publisher, response }; }); const globalGooglePromise = this.getGenAIModelsArray(globalGenAiClient); // Await all network requests const [aiplatformResult, globalGoogleResult, ...publisherResults] = await Promise.all([ aiplatformPromise, globalGooglePromise, ...publisherPromises, ]); // Process aiplatform models, project specific models const [response] = aiplatformResult; models = models.concat(response.map((model) => ({ id: model.name?.split("/").pop() ?? "", name: model.displayName ?? "", provider: "vertexai" }))); // Process global google models from GenAI models = models.concat(globalGoogleResult.map((model) => { const modelCapability = getModelCapabilities(model.name ?? '', "vertexai"); return { id: "locations/global/" + model.name, name: "Global " + model.name?.split('/').pop(), provider: "vertexai", owner: "google", input_modalities: modelModalitiesToArray(modelCapability.input), output_modalities: modelModalitiesToArray(modelCapability.output), tool_support: modelCapability.tool_support, }; })); // Process publisher models for (const result of publisherResults) { const { publisher, response } = result; const modelFamily = supportedModels[publisher]; const retiredModels = unsupportedModelsByPublisher[publisher]; models = models.concat(response.filter((model) => { const modelName = model.name ?? ""; // Exclude retired models if (retiredModels.some(retiredModel => modelName.includes(retiredModel))) { return false; } // Check if the model belongs to the supported model families if (modelFamily.some(family => modelName.includes(family))) { return true; } return false; }).map(model => { const modelCapability = getModelCapabilities(model.name ?? '', "vertexai"); return { id: model.name ?? '', name: model.name?.split('/').pop() ?? '', provider: 'vertexai', owner: publisher, input_modalities: modelModalitiesToArray(modelCapability.input), output_modalities: modelModalitiesToArray(modelCapability.output), tool_support: modelCapability.tool_support, }; })); // Create global anthropic models for those not in NON_GLOBAL_ANTHROPIC_MODELS if (publisher === 'anthropic') { const globalAnthropicModels = response.filter((model) => { const modelName = model.name ?? ""; if (retiredModels.some(retiredModel => modelName.includes(retiredModel))) { return false; } if (modelFamily.some(family => modelName.includes(family))) { if (modelName.includes("claude-3-7")) { return true; } return !NON_GLOBAL_ANTHROPIC_MODELS.some(nonGlobalModel => modelName.includes(nonGlobalModel)); } return false; }).map(model => { const modelCapability = getModelCapabilities(model.name ?? '', "vertexai"); return { id: "locations/global/" + model.name, name: "Global " + model.name?.split('/').pop(), provider: 'vertexai', owner: publisher, input_modalities: modelModalitiesToArray(modelCapability.input), output_modalities: modelModalitiesToArray(modelCapability.output), tool_support: modelCapability.tool_support, }; }); models = models.concat(globalAnthropicModels); } // Add additional models that are not in the listing for (const additionalModel of additionalModels[publisher]) { const publisherModelName = `publishers/${publisher}/models/${additionalModel}`; const modelCapability = getModelCapabilities(additionalModel, "vertexai"); models.push({ id: publisherModelName, name: additionalModel, provider: 'vertexai', owner: publisher, input_modalities: modelModalitiesToArray(modelCapability.input), output_modalities: modelModalitiesToArray(modelCapability.output), tool_support: modelCapability.tool_support, }); } } //Remove duplicates const uniqueModels = Array.from(new Set(models.map(a => a.id))) .map(id => { return models.find(a => a.id === id) ?? {}; }).sort((a, b) => a.id.localeCompare(b.id)); return uniqueModels; } validateConnection() { throw new Error("Method not implemented."); } async generateEmbeddings(options) { if (options.image || options.model?.includes("multimodal")) { if (options.text && options.image) { throw new Error("Text and Image simultaneous embedding not implemented. Submit separately"); } return getEmbeddingsForImages(this, options); } const text_options = { content: options.text ?? "", model: options.model, }; return getEmbeddingsForText(this, text_options); } } //'us-central1-aiplatform.googleapis.com', const API_BASE_PATH = "aiplatform.googleapis.com"; function createFetchClient({ region, project, apiEndpoint, apiVersion = "v1", }) { const vertexBaseEndpoint = apiEndpoint ?? `${region}-${API_BASE_PATH}`; return new FetchClient(`https://${vertexBaseEndpoint}/${apiVersion}/projects/${project}/locations/${region}`).withHeaders({ "Content-Type": "application/json", }); } //# sourceMappingURL=index.js.map