@llumiverse/drivers
Version:
LLM driver implementations. Currently supported are: openai, huggingface, bedrock, replicate.
286 lines • 12.5 kB
JavaScript
import { AbstractDriver } from "@llumiverse/core";
import { transformAsyncIterator } from "@llumiverse/core/async";
import { formatOpenAILikeMultimodalPrompt } from "../openai/openai_format.js";
import Groq from "groq-sdk";
export class GroqDriver extends AbstractDriver {
static PROVIDER = "groq";
provider = GroqDriver.PROVIDER;
apiKey;
client;
endpointUrl;
constructor(options) {
super(options);
this.apiKey = options.apiKey;
this.client = new Groq({
apiKey: options.apiKey,
baseURL: options.endpoint_url
});
}
// protected canStream(options: ExecutionOptions): Promise<boolean> {
// if (options.result_schema) {
// // not yet streaming json responses
// return Promise.resolve(false);
// } else {
// return Promise.resolve(true);
// }
// }
getResponseFormat(_options) {
//TODO: when forcing json_object type the streaming is not supported.
// either implement canStream as above or comment the code below:
// const responseFormatJson: Groq.Chat.Completions.CompletionCreateParams.ResponseFormat = {
// type: "json_object",
// }
// return _options.result_schema ? responseFormatJson : undefined;
return undefined;
}
async formatPrompt(segments, opts) {
// Use OpenAI's multimodal formatter as base then convert to Groq types
const openaiMessages = await formatOpenAILikeMultimodalPrompt(segments, {
...opts,
multimodal: true,
});
// Convert OpenAI ChatCompletionMessageParam[] to Groq ChatCompletionMessageParam[]
// Handle differences between OpenAI and Groq SDK types
const groqMessages = openaiMessages.map(msg => {
// Handle OpenAI developer messages - convert to system messages for Groq
if (msg.role === 'developer' || msg.role === 'system') {
const systemMsg = {
role: 'system',
content: Array.isArray(msg.content)
? msg.content.map(part => part.text).join('\n')
: msg.content,
// Preserve name if present
...(msg.name && { name: msg.name })
};
return systemMsg;
}
// Handle user messages - filter content parts to only supported types
if (msg.role === 'user') {
let content = undefined;
if (typeof msg.content === 'string') {
content = msg.content;
}
else if (Array.isArray(msg.content)) {
// Filter to only text and image_url parts that Groq supports
const supportedParts = msg.content.filter(part => part.type === 'text' || part.type === 'image_url').map(part => {
if (part.type === 'text') {
return { type: 'text', text: part.text };
}
else if (part.type === 'image_url') {
return {
type: 'image_url',
image_url: {
url: part.image_url.url,
...(part.image_url.detail && { detail: part.image_url.detail })
}
};
}
return null;
}).filter(Boolean);
content = supportedParts.length > 0 ? supportedParts : 'Content not supported';
}
const userMsg = {
role: 'user',
content: content ?? "",
// Preserve name if present
...(msg.name && { name: msg.name })
};
return userMsg;
}
// Handle assistant messages - handle content arrays if needed
if (msg.role === 'assistant') {
const assistantMsg = {
role: 'assistant',
content: Array.isArray(msg.content)
? msg.content.map(part => 'text' in part ? part.text : '').filter(Boolean).join('\n') || null
: msg.content,
// Preserve other assistant message properties
...(msg.tool_calls && { tool_calls: msg.tool_calls }),
...(msg.name && { name: msg.name })
};
return assistantMsg;
}
// For tool and function messages, they should be compatible
if (msg.role === 'tool') {
const toolMsg = {
role: 'tool',
tool_call_id: msg.tool_call_id,
content: Array.isArray(msg.content)
? msg.content.map(part => part.text).join('\n')
: msg.content
};
return toolMsg;
}
if (msg.role === 'function') {
const functionMsg = {
role: 'function',
name: msg.name,
content: msg.content
};
return functionMsg;
}
// Fallback - should not reach here but provides type safety
throw new Error(`Unsupported message role: ${msg.role}`);
});
return groqMessages;
}
getToolDefinitions(tools) {
if (!tools || tools.length === 0) {
return undefined;
}
return tools.map(tool => ({
type: 'function',
function: {
name: tool.name,
description: tool.description,
parameters: tool.input_schema,
}
}));
}
extractToolUse(message) {
if (!message.tool_calls || message.tool_calls.length === 0) {
return undefined;
}
return message.tool_calls.map((toolCall) => ({
id: toolCall.id,
tool_name: toolCall.function.name,
tool_input: JSON.parse(toolCall.function.arguments || '{}'),
}));
}
sanitizeMessagesForGroq(messages) {
return messages.map(message => {
// Remove any reasoning field from message objects
const { reasoning, ...sanitizedMessage } = message;
// If message has content array, filter out reasoning content types
if (Array.isArray(sanitizedMessage.content)) {
sanitizedMessage.content = sanitizedMessage.content.filter((part) => {
// Filter out any reasoning-related content parts
return part.type !== 'reasoning' && !('reasoning' in part);
});
}
return sanitizedMessage;
});
}
async requestTextCompletion(messages, options) {
if (options.model_options?._option_id !== "text-fallback" && options.model_options?._option_id !== "groq-deepseek-thinking") {
this.logger.warn({ options: options.model_options }, "Invalid model options");
}
options.model_options = options.model_options;
// Update conversation with current messages
let conversation = updateConversation(options.conversation, messages);
// Filter out any reasoning content that Groq doesn't support
conversation = this.sanitizeMessagesForGroq(conversation);
const tools = this.getToolDefinitions(options.tools);
const res = await this.client.chat.completions.create({
model: options.model,
messages: conversation,
max_completion_tokens: options.model_options?.max_tokens,
temperature: options.model_options?.temperature,
top_p: options.model_options?.top_p,
//top_logprobs: options.top_logprobs, //Logprobs output currently not supported
//logprobs: options.top_logprobs ? true : false,
presence_penalty: options.model_options?.presence_penalty,
frequency_penalty: options.model_options?.frequency_penalty,
response_format: this.getResponseFormat(options),
tools: tools,
});
const choice = res.choices[0];
const result = choice.message.content;
// Extract tool use from the response
const tool_use = this.extractToolUse(choice.message);
// Update conversation with the response
conversation = updateConversation(conversation, [choice.message]);
let finish_reason = choice.finish_reason;
if (tool_use && tool_use.length > 0) {
finish_reason = "tool_calls";
}
return {
result: result ? [{ type: "text", value: result }] : [],
token_usage: {
prompt: res.usage?.prompt_tokens,
result: res.usage?.completion_tokens,
total: res.usage?.total_tokens,
},
finish_reason: finish_reason,
original_response: options.include_original_response ? res : undefined,
conversation,
tool_use,
};
}
async requestTextCompletionStream(messages, options) {
if (options.model_options?._option_id !== "text-fallback") {
this.logger.warn({ options: options.model_options }, "Invalid model options");
}
options.model_options = options.model_options;
// Update conversation with current messages
let conversation = updateConversation(options.conversation, messages);
// Filter out any reasoning content that Groq doesn't support
conversation = this.sanitizeMessagesForGroq(conversation);
const tools = this.getToolDefinitions(options.tools);
const res = await this.client.chat.completions.create({
model: options.model,
messages: conversation,
max_completion_tokens: options.model_options?.max_tokens,
temperature: options.model_options?.temperature,
top_p: options.model_options?.top_p,
//top_logprobs: options.top_logprobs, //Logprobs output currently not supported
//logprobs: options.top_logprobs ? true : false,
presence_penalty: options.model_options?.presence_penalty,
frequency_penalty: options.model_options?.frequency_penalty,
stream: true,
tools: tools,
});
return transformAsyncIterator(res, (chunk) => {
const choice = chunk.choices[0];
let finish_reason = choice.finish_reason;
// Check for tool calls in the delta
if (choice.delta.tool_calls && choice.delta.tool_calls.length > 0) {
finish_reason = "tool_calls";
}
return {
result: choice.delta.content ? [{ type: "text", value: choice.delta.content }] : [],
finish_reason: finish_reason ?? undefined,
token_usage: {
prompt: chunk.x_groq?.usage?.prompt_tokens,
result: chunk.x_groq?.usage?.completion_tokens,
total: chunk.x_groq?.usage?.total_tokens,
},
};
});
}
async listModels() {
const models = await this.client.models.list();
if (!models.data) {
throw new Error("No models found");
}
const aiModels = models.data?.map(m => {
if (!m.id) {
throw new Error("Model id is missing");
}
return {
id: m.id,
name: m.id,
description: undefined,
provider: this.provider,
owner: m.owned_by || '',
};
});
return aiModels;
}
validateConnection() {
throw new Error("Method not implemented.");
}
async generateEmbeddings({}) {
throw new Error("Method not implemented.");
}
}
/**
* Update the conversation messages by combining existing conversation with new messages
* @param conversation Existing conversation messages
* @param messages New messages to add
* @returns Combined conversation
*/
function updateConversation(conversation, messages) {
return (conversation || []).concat(messages);
}
//# sourceMappingURL=index.js.map