@llm-tools/embedjs
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
24 lines (23 loc) • 1.31 kB
TypeScript
import { BaseStore, Conversation, LoaderListEntry, Message } from '@llm-tools/embedjs-interfaces';
export declare class MemoryStore implements BaseStore {
private loaderCustomValues;
private loaderCustomValuesMap;
private loaderList;
private conversations;
init(): Promise<void>;
addLoaderMetadata(loaderId: string, value: LoaderListEntry): Promise<void>;
getLoaderMetadata(loaderId: string): Promise<LoaderListEntry>;
hasLoaderMetadata(loaderId: string): Promise<boolean>;
getAllLoaderMetadata(): Promise<LoaderListEntry[]>;
loaderCustomSet<T extends Record<string, unknown>>(loaderId: string, key: string, value: T): Promise<void>;
loaderCustomGet<T extends Record<string, unknown>>(key: string): Promise<T>;
loaderCustomHas(key: string): Promise<boolean>;
loaderCustomDelete(key: string): Promise<void>;
deleteLoaderMetadataAndCustomValues(loaderId: string): Promise<void>;
addConversation(conversationId: string): Promise<void>;
getConversation(conversationId: string): Promise<Conversation>;
hasConversation(conversationId: string): Promise<boolean>;
deleteConversation(conversationId: string): Promise<void>;
addEntryToConversation(conversationId: string, entry: Message): Promise<void>;
clearConversations(): Promise<void>;
}