@llm-tools/embedjs
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
42 lines • 1.63 kB
JavaScript
import { BaseLoader } from '@llm-tools/embedjs-interfaces';
import { cleanString, truncateCenterString } from '@llm-tools/embedjs-utils';
import md5 from 'md5';
export class JsonLoader extends BaseLoader {
object;
pickKeysForEmbedding;
constructor({ object, pickKeysForEmbedding, }) {
super(`JsonLoader_${md5(cleanString(JSON.stringify(object)))}`, {
object: truncateCenterString(JSON.stringify(object), 50),
});
this.pickKeysForEmbedding = pickKeysForEmbedding;
this.object = object;
}
async *getUnfilteredChunks() {
const tuncatedObjectString = truncateCenterString(JSON.stringify(this.object), 50);
const array = Array.isArray(this.object) ? this.object : [this.object];
for (const entry of array) {
let s;
if (this.pickKeysForEmbedding) {
const subset = Object.fromEntries(this.pickKeysForEmbedding
.filter((key) => key in entry) // line can be removed to make it inclusive
.map((key) => [key, entry[key]]));
s = cleanString(JSON.stringify(subset));
}
else {
s = cleanString(JSON.stringify(entry));
}
if ('id' in entry) {
entry.preEmbedId = entry.id;
delete entry.id;
}
yield {
pageContent: s,
metadata: {
type: 'JsonLoader',
source: tuncatedObjectString,
},
};
}
}
}
//# sourceMappingURL=json-loader.js.map