@llm-tools/embedjs
Version:
A NodeJS RAG framework to easily work with LLMs and custom datasets
57 lines (56 loc) • 2.82 kB
TypeScript
import { BaseStore, BaseVectorDatabase, BaseEmbeddings, BaseLoader, BaseModel, SIMPLE_MODELS } from '@llm-tools/embedjs-interfaces';
import { RAGApplication } from './rag-application.js';
export declare class RAGApplicationBuilder {
private temperature;
private model;
private vectorDatabase;
private loaders;
private store;
private systemMessage;
private searchResultCount;
private embeddingModel;
private embeddingRelevanceCutOff;
private storeConversationsToDefaultThread;
constructor();
/**
* The `build` function creates a new `RAGApplication` entity and initializes it asynchronously based on provided parameters.
* @returns An instance of the `RAGApplication` class after it has been initialized asynchronously.
*/
build(): Promise<RAGApplication>;
/**
* The function setVectorDatabase sets a BaseVectorDatabase object
* @param {BaseVectorDatabase} vectorDatabase - The `vectorDatabase` parameter is an instance of the `BaseVectorDatabase` class, which
* is used to store vectors in a database.
* @returns The `this` object is being returned, which allows for method chaining.
*/
setVectorDatabase(vectorDatabase: BaseVectorDatabase): this;
setEmbeddingModel(embeddingModel: BaseEmbeddings): this;
setModel(model: 'NO_MODEL' | SIMPLE_MODELS | BaseModel): this;
setStore(store: BaseStore): this;
setTemperature(temperature: number): this;
setSystemMessage(systemMessage: string): this;
setEmbeddingRelevanceCutOff(embeddingRelevanceCutOff: number): this;
addLoader(loader: BaseLoader): this;
/**
* The setSearchResultCount function sets the search result count
* @param {number} searchResultCount - The `searchResultCount` parameter
* represents the count of search results picked up from the vector store per query.
* @returns The `this` object is being returned, which allows for method chaining.
*/
setSearchResultCount(searchResultCount: number): this;
/**
* The setParamStoreConversationsToDefaultThread configures whether the conversation hisotry for queries made
* without a conversationId passed should be stored in the default thread. This is set to True by default.
*/
setParamStoreConversationsToDefaultThread(storeConversationsToDefaultThread: boolean): this;
getLoaders(): BaseLoader<Record<string, string | number | boolean>, Record<string, unknown>>[];
getSearchResultCount(): number;
getVectorDatabase(): BaseVectorDatabase;
getTemperature(): number;
getEmbeddingRelevanceCutOff(): number;
getSystemMessage(): string;
getStore(): BaseStore;
getEmbeddingModel(): BaseEmbeddings;
getModel(): BaseModel | SIMPLE_MODELS;
getParamStoreConversationsToDefaultThread(): boolean;
}