UNPKG

@liammartens/svg-path-properties

Version:

Calculate the length for an SVG path, to use it with node or a Canvas element

178 lines (156 loc) 4.52 kB
import { tValues, cValues, binomialCoefficients } from "./bezier-values"; import { Point } from "./types"; export const cubicPoint = (xs: number[], ys: number[], t: number): Point => { const x = (1 - t) * (1 - t) * (1 - t) * xs[0] + 3 * (1 - t) * (1 - t) * t * xs[1] + 3 * (1 - t) * t * t * xs[2] + t * t * t * xs[3]; const y = (1 - t) * (1 - t) * (1 - t) * ys[0] + 3 * (1 - t) * (1 - t) * t * ys[1] + 3 * (1 - t) * t * t * ys[2] + t * t * t * ys[3]; return { x: x, y: y }; }; export const cubicDerivative = (xs: number[], ys: number[], t: number) => { const derivative = quadraticPoint( [3 * (xs[1] - xs[0]), 3 * (xs[2] - xs[1]), 3 * (xs[3] - xs[2])], [3 * (ys[1] - ys[0]), 3 * (ys[2] - ys[1]), 3 * (ys[3] - ys[2])], t ); return derivative; }; export const getCubicArcLength = (xs: number[], ys: number[], t: number) => { let z: number; let sum: number; let correctedT: number; /*if (xs.length >= tValues.length) { throw new Error('too high n bezier'); }*/ const n = 20; z = t / 2; sum = 0; for (let i = 0; i < n; i++) { correctedT = z * tValues[n][i] + z; sum += cValues[n][i] * BFunc(xs, ys, correctedT); } return z * sum; }; export const quadraticPoint = ( xs: number[], ys: number[], t: number ): Point => { const x = (1 - t) * (1 - t) * xs[0] + 2 * (1 - t) * t * xs[1] + t * t * xs[2]; const y = (1 - t) * (1 - t) * ys[0] + 2 * (1 - t) * t * ys[1] + t * t * ys[2]; return { x: x, y: y }; }; export const getQuadraticArcLength = ( xs: number[], ys: number[], t: number ) => { if (t === undefined) { t = 1; } const ax = xs[0] - 2 * xs[1] + xs[2]; const ay = ys[0] - 2 * ys[1] + ys[2]; const bx = 2 * xs[1] - 2 * xs[0]; const by = 2 * ys[1] - 2 * ys[0]; const A = 4 * (ax * ax + ay * ay); const B = 4 * (ax * bx + ay * by); const C = bx * bx + by * by; if (A === 0) { return ( t * Math.sqrt(Math.pow(xs[2] - xs[0], 2) + Math.pow(ys[2] - ys[0], 2)) ); } const b = B / (2 * A); const c = C / A; const u = t + b; const k = c - b * b; const uuk = u * u + k > 0 ? Math.sqrt(u * u + k) : 0; const bbk = b * b + k > 0 ? Math.sqrt(b * b + k) : 0; const term = b + Math.sqrt(b * b + k) !== 0 && ((u + uuk) / (b + bbk)) != 0 ? k * Math.log(Math.abs((u + uuk) / (b + bbk))) : 0; return (Math.sqrt(A) / 2) * (u * uuk - b * bbk + term); }; export const quadraticDerivative = (xs: number[], ys: number[], t: number) => { return { x: (1 - t) * 2 * (xs[1] - xs[0]) + t * 2 * (xs[2] - xs[1]), y: (1 - t) * 2 * (ys[1] - ys[0]) + t * 2 * (ys[2] - ys[1]), }; }; function BFunc(xs: number[], ys: number[], t: number) { const xbase = getDerivative(1, t, xs); const ybase = getDerivative(1, t, ys); const combined = xbase * xbase + ybase * ybase; return Math.sqrt(combined); } /** * Compute the curve derivative (hodograph) at t. */ const getDerivative = (derivative: number, t: number, vs: number[]): number => { // the derivative of any 't'-less function is zero. const n = vs.length - 1; let _vs; let value; if (n === 0) { return 0; } // direct values? compute! if (derivative === 0) { value = 0; for (let k = 0; k <= n; k++) { value += binomialCoefficients[n][k] * Math.pow(1 - t, n - k) * Math.pow(t, k) * vs[k]; } return value; } else { // Still some derivative? go down one order, then try // for the lower order curve's. _vs = new Array(n); for (let k = 0; k < n; k++) { _vs[k] = n * (vs[k + 1] - vs[k]); } return getDerivative(derivative - 1, t, _vs); } }; export const t2length = ( length: number, totalLength: number, func: (t: number) => number ): number => { let error = 1; let t = length / totalLength; let step = (length - func(t)) / totalLength; let numIterations = 0; while (error > 0.001) { const increasedTLength = func(t + step); const increasedTError = Math.abs(length - increasedTLength) / totalLength; if (increasedTError < error) { error = increasedTError; t += step; } else { const decreasedTLength = func(t - step); const decreasedTError = Math.abs(length - decreasedTLength) / totalLength; if (decreasedTError < error) { error = decreasedTError; t -= step; } else { step /= 2; } } numIterations++; if (numIterations > 500) { break; } } return t; };