@liammartens/svg-path-properties
Version:
Calculate the length for an SVG path, to use it with node or a Canvas element
178 lines (156 loc) • 4.52 kB
text/typescript
import { tValues, cValues, binomialCoefficients } from "./bezier-values";
import { Point } from "./types";
export const cubicPoint = (xs: number[], ys: number[], t: number): Point => {
const x =
(1 - t) * (1 - t) * (1 - t) * xs[0] +
3 * (1 - t) * (1 - t) * t * xs[1] +
3 * (1 - t) * t * t * xs[2] +
t * t * t * xs[3];
const y =
(1 - t) * (1 - t) * (1 - t) * ys[0] +
3 * (1 - t) * (1 - t) * t * ys[1] +
3 * (1 - t) * t * t * ys[2] +
t * t * t * ys[3];
return { x: x, y: y };
};
export const cubicDerivative = (xs: number[], ys: number[], t: number) => {
const derivative = quadraticPoint(
[3 * (xs[1] - xs[0]), 3 * (xs[2] - xs[1]), 3 * (xs[3] - xs[2])],
[3 * (ys[1] - ys[0]), 3 * (ys[2] - ys[1]), 3 * (ys[3] - ys[2])],
t
);
return derivative;
};
export const getCubicArcLength = (xs: number[], ys: number[], t: number) => {
let z: number;
let sum: number;
let correctedT: number;
/*if (xs.length >= tValues.length) {
throw new Error('too high n bezier');
}*/
const n = 20;
z = t / 2;
sum = 0;
for (let i = 0; i < n; i++) {
correctedT = z * tValues[n][i] + z;
sum += cValues[n][i] * BFunc(xs, ys, correctedT);
}
return z * sum;
};
export const quadraticPoint = (
xs: number[],
ys: number[],
t: number
): Point => {
const x = (1 - t) * (1 - t) * xs[0] + 2 * (1 - t) * t * xs[1] + t * t * xs[2];
const y = (1 - t) * (1 - t) * ys[0] + 2 * (1 - t) * t * ys[1] + t * t * ys[2];
return { x: x, y: y };
};
export const getQuadraticArcLength = (
xs: number[],
ys: number[],
t: number
) => {
if (t === undefined) {
t = 1;
}
const ax = xs[0] - 2 * xs[1] + xs[2];
const ay = ys[0] - 2 * ys[1] + ys[2];
const bx = 2 * xs[1] - 2 * xs[0];
const by = 2 * ys[1] - 2 * ys[0];
const A = 4 * (ax * ax + ay * ay);
const B = 4 * (ax * bx + ay * by);
const C = bx * bx + by * by;
if (A === 0) {
return (
t * Math.sqrt(Math.pow(xs[2] - xs[0], 2) + Math.pow(ys[2] - ys[0], 2))
);
}
const b = B / (2 * A);
const c = C / A;
const u = t + b;
const k = c - b * b;
const uuk = u * u + k > 0 ? Math.sqrt(u * u + k) : 0;
const bbk = b * b + k > 0 ? Math.sqrt(b * b + k) : 0;
const term =
b + Math.sqrt(b * b + k) !== 0 && ((u + uuk) / (b + bbk)) != 0
? k * Math.log(Math.abs((u + uuk) / (b + bbk)))
: 0;
return (Math.sqrt(A) / 2) * (u * uuk - b * bbk + term);
};
export const quadraticDerivative = (xs: number[], ys: number[], t: number) => {
return {
x: (1 - t) * 2 * (xs[1] - xs[0]) + t * 2 * (xs[2] - xs[1]),
y: (1 - t) * 2 * (ys[1] - ys[0]) + t * 2 * (ys[2] - ys[1]),
};
};
function BFunc(xs: number[], ys: number[], t: number) {
const xbase = getDerivative(1, t, xs);
const ybase = getDerivative(1, t, ys);
const combined = xbase * xbase + ybase * ybase;
return Math.sqrt(combined);
}
/**
* Compute the curve derivative (hodograph) at t.
*/
const getDerivative = (derivative: number, t: number, vs: number[]): number => {
// the derivative of any 't'-less function is zero.
const n = vs.length - 1;
let _vs;
let value;
if (n === 0) {
return 0;
}
// direct values? compute!
if (derivative === 0) {
value = 0;
for (let k = 0; k <= n; k++) {
value +=
binomialCoefficients[n][k] *
Math.pow(1 - t, n - k) *
Math.pow(t, k) *
vs[k];
}
return value;
} else {
// Still some derivative? go down one order, then try
// for the lower order curve's.
_vs = new Array(n);
for (let k = 0; k < n; k++) {
_vs[k] = n * (vs[k + 1] - vs[k]);
}
return getDerivative(derivative - 1, t, _vs);
}
};
export const t2length = (
length: number,
totalLength: number,
func: (t: number) => number
): number => {
let error = 1;
let t = length / totalLength;
let step = (length - func(t)) / totalLength;
let numIterations = 0;
while (error > 0.001) {
const increasedTLength = func(t + step);
const increasedTError = Math.abs(length - increasedTLength) / totalLength;
if (increasedTError < error) {
error = increasedTError;
t += step;
} else {
const decreasedTLength = func(t - step);
const decreasedTError = Math.abs(length - decreasedTLength) / totalLength;
if (decreasedTError < error) {
error = decreasedTError;
t -= step;
} else {
step /= 2;
}
}
numIterations++;
if (numIterations > 500) {
break;
}
}
return t;
};