@levabala/react-native-uuid
Version:
react-native-uuid is a zero-dependency TypeScript implementation of RFC4122.
365 lines (320 loc) • 9.52 kB
text/typescript
/* eslint-disable no-bitwise */
/*
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
* in FIPS 180-1
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
* Distributed under the BSD License
* See http://pajhome.org.uk/crypt/md5 for details.
*/
/*
* Configurable variables. You may need to tweak these to be compatible with
* the server-side, but the defaults work in most cases.
*/
/* hex output format. 0 - lowercase; 1 - uppercase */
let hexcase = 0;
/* base-64 pad character. "=" for strict RFC compliance */
let b64pad = '';
/*
* These are the functions you'll usually want to call
* They take string arguments and return either hex or base-64 encoded strings
*/
export const hex_sha1 = (s: string) => rstr2hex(rstr_sha1(str2rstr_utf8(s)));
export default hex_sha1;
export const b64_sha1 = (s: string) => rstr2b64(rstr_sha1(str2rstr_utf8(s)));
export const any_sha1 = (s: string, e: string) =>
rstr2any(rstr_sha1(str2rstr_utf8(s)), e);
export const hex_hmac_sha1 = (k: string, d: string) =>
rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)));
export const b64_hmac_sha1 = (k: string, d: string) =>
rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)));
export const any_hmac_sha1 = (k: string, d: string, e: string) =>
rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e);
/*
* Perform a simple self-test to see if the VM is working
*/
// eslint-disable-next-line @typescript-eslint/no-unused-vars
const sha1_vm_test = () =>
hex_sha1('abc').toLowerCase() === 'a9993e364706816aba3e25717850c26c9cd0d89d';
/*
* Calculate the SHA1 of a raw string
*/
const rstr_sha1 = (s: string) =>
binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
/*
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
*/
const rstr_hmac_sha1 = (key: string, data: string) => {
let bkey = rstr2binb(key);
if (bkey.length > 16) {
bkey = binb_sha1(bkey, key.length * 8);
}
let ipad = Array(16);
let opad = Array(16);
for (var i = 0; i < 16; i++) {
ipad[i] = bkey[i] ^ 0x36363636;
opad[i] = bkey[i] ^ 0x5c5c5c5c;
}
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
};
/*
* Convert a raw string to a hex string
*/
const rstr2hex = (input: string) => {
try {
hexcase;
} catch (e) {
hexcase = 0;
}
var hex_tab = hexcase ? '0123456789ABCDEF' : '0123456789abcdef';
var output = '';
var x;
for (var i = 0; i < input.length; i++) {
x = input.charCodeAt(i);
output += hex_tab.charAt((x >>> 4) & 0x0f) + hex_tab.charAt(x & 0x0f);
}
return output;
};
/*
* Convert a raw string to a base-64 string
*/
const rstr2b64 = (input: string) => {
try {
b64pad;
} catch (e) {
b64pad = '';
}
var tab = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
var output = '';
var len = input.length;
for (var i = 0; i < len; i += 3) {
var triplet =
(input.charCodeAt(i) << 16) |
(i + 1 < len ? input.charCodeAt(i + 1) << 8 : 0) |
(i + 2 < len ? input.charCodeAt(i + 2) : 0);
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 > input.length * 8) {
output += b64pad;
} else {
output += tab.charAt((triplet >>> (6 * (3 - j))) & 0x3f);
}
}
}
return output;
};
/*
* Convert a raw string to an arbitrary string encoding
*/
const rstr2any = (input: string, encoding: string) => {
var divisor = encoding.length;
var remainders = [];
var i, q, x, quotient;
/* Convert to an array of 16-bit big-endian values, forming the dividend */
var dividend = Array(Math.ceil(input.length / 2));
for (i = 0; i < dividend.length; i++) {
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
}
/*
* Repeatedly perform a long division. The binary array forms the dividend,
* the length of the encoding is the divisor. Once computed, the quotient
* forms the dividend for the next step. We stop when the dividend is zero.
* All remainders are stored for later use.
*/
while (dividend.length > 0) {
quotient = [];
x = 0;
for (i = 0; i < dividend.length; i++) {
x = (x << 16) + dividend[i];
q = Math.floor(x / divisor);
x -= q * divisor;
if (quotient.length > 0 || q > 0) {
quotient[quotient.length] = q;
}
}
remainders[remainders.length] = x;
dividend = quotient;
}
/* Convert the remainders to the output string */
var output = '';
for (i = remainders.length - 1; i >= 0; i--) {
output += encoding.charAt(remainders[i]);
}
/* Append leading zero equivalents */
var full_length = Math.ceil(
(input.length * 8) / (Math.log(encoding.length) / Math.log(2)),
);
for (i = output.length; i < full_length; i++) {
output = encoding[0] + output;
}
return output;
};
/*
* Encode a string as utf-8.
* For efficiency, this assumes the input is valid utf-16.
*/
const str2rstr_utf8 = (input: string) => {
var output = '';
var i = -1;
var x, y;
while (++i < input.length) {
/* Decode utf-16 surrogate pairs */
x = input.charCodeAt(i);
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
if (x >= 0xd800 && x <= 0xdbff && y >= 0xdc00 && y <= 0xdfff) {
x = 0x10000 + ((x & 0x03ff) << 10) + (y & 0x03ff);
i++;
}
/* Encode output as utf-8 */
if (x <= 0x7f) {
output += String.fromCharCode(x);
} else if (x <= 0x7ff) {
output += String.fromCharCode(
0xc0 | ((x >>> 6) & 0x1f),
0x80 | (x & 0x3f),
);
} else if (x <= 0xffff) {
output += String.fromCharCode(
0xe0 | ((x >>> 12) & 0x0f),
0x80 | ((x >>> 6) & 0x3f),
0x80 | (x & 0x3f),
);
} else if (x <= 0x1fffff) {
output += String.fromCharCode(
0xf0 | ((x >>> 18) & 0x07),
0x80 | ((x >>> 12) & 0x3f),
0x80 | ((x >>> 6) & 0x3f),
0x80 | (x & 0x3f),
);
}
}
return output;
};
/*
* Encode a string as utf-16
*/
// eslint-disable-next-line @typescript-eslint/no-unused-vars
const str2rstr_utf16le = (input: string) => {
var output = '';
for (var i = 0; i < input.length; i++) {
output += String.fromCharCode(
input.charCodeAt(i) & 0xff,
(input.charCodeAt(i) >>> 8) & 0xff,
);
}
return output;
};
// eslint-disable-next-line @typescript-eslint/no-unused-vars
const str2rstr_utf16be = (input: string) => {
var output = '';
for (var i = 0; i < input.length; i++) {
output += String.fromCharCode(
(input.charCodeAt(i) >>> 8) & 0xff,
input.charCodeAt(i) & 0xff,
);
}
return output;
};
/*
* Convert a raw string to an array of big-endian words
* Characters >255 have their high-byte silently ignored.
*/
const rstr2binb = (input: string) => {
var output = Array(input.length >> 2);
for (var i = 0; i < output.length; i++) {
output[i] = 0;
}
for (var i = 0; i < input.length * 8; i += 8) {
output[i >> 5] |= (input.charCodeAt(i / 8) & 0xff) << (24 - (i % 32));
}
return output;
};
/*
* Convert an array of big-endian words to a string
*/
const binb2rstr = (input: number[]) => {
var output = '';
for (var i = 0; i < input.length * 32; i += 8) {
output += String.fromCharCode((input[i >> 5] >>> (24 - (i % 32))) & 0xff);
}
return output;
};
/*
* Calculate the SHA-1 of an array of big-endian words, and a bit length
*/
const binb_sha1 = (x: number[], len: number) => {
/* append padding */
x[len >> 5] |= 0x80 << (24 - (len % 32));
x[(((len + 64) >> 9) << 4) + 15] = len;
var w = Array(80);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
var e = -1009589776;
for (var i = 0; i < x.length; i += 16) {
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
var olde = e;
for (var j = 0; j < 80; j++) {
if (j < 16) {
w[j] = x[i + j];
} else {
w[j] = bit_rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);
}
let t = safe_add(
safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
safe_add(safe_add(e, w[j]), sha1_kt(j)),
);
e = d;
d = c;
c = bit_rol(b, 30);
b = a;
a = t;
}
a = safe_add(a, olda);
b = safe_add(b, oldb);
c = safe_add(c, oldc);
d = safe_add(d, oldd);
e = safe_add(e, olde);
}
return [a, b, c, d, e];
};
/*
* Perform the appropriate triplet combination function for the current
* iteration
*/
const sha1_ft = (t: number, b: number, c: number, d: number) => {
if (t < 20) {
return (b & c) | (~b & d);
}
if (t < 40) {
return b ^ c ^ d;
}
if (t < 60) {
return (b & c) | (b & d) | (c & d);
}
return b ^ c ^ d;
};
/*
* Determine the appropriate additive constant for the current iteration
*/
const sha1_kt = (t: number) =>
t < 20 ? 1518500249 : t < 40 ? 1859775393 : t < 60 ? -1894007588 : -899497514;
/*
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*/
const safe_add = (x: number, y: number) => {
var lsw = (x & 0xffff) + (y & 0xffff);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xffff);
};
/*
* Bitwise rotate a 32-bit number to the left.
*/
const bit_rol = (num: number, cnt: number) => {
return (num << cnt) | (num >>> (32 - cnt));
};