@lbrlabs/pulumi-grafana
Version:
A Pulumi package for creating and managing grafana.
160 lines (159 loc) • 6.02 kB
TypeScript
import * as pulumi from "@pulumi/pulumi";
import * as inputs from "./types/input";
import * as outputs from "./types/output";
/**
* An outlier detector monitors the results of a query and reports when its values are outside normal bands.
*
* The normal band is configured by choice of algorithm, its sensitivity and other configuration.
*
* Visit https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for more details.
*/
export declare class MachineLearningOutlierDetector extends pulumi.CustomResource {
/**
* Get an existing MachineLearningOutlierDetector resource's state with the given name, ID, and optional extra
* properties used to qualify the lookup.
*
* @param name The _unique_ name of the resulting resource.
* @param id The _unique_ provider ID of the resource to lookup.
* @param state Any extra arguments used during the lookup.
* @param opts Optional settings to control the behavior of the CustomResource.
*/
static get(name: string, id: pulumi.Input<pulumi.ID>, state?: MachineLearningOutlierDetectorState, opts?: pulumi.CustomResourceOptions): MachineLearningOutlierDetector;
/**
* Returns true if the given object is an instance of MachineLearningOutlierDetector. This is designed to work even
* when multiple copies of the Pulumi SDK have been loaded into the same process.
*/
static isInstance(obj: any): obj is MachineLearningOutlierDetector;
/**
* The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.
*/
readonly algorithm: pulumi.Output<outputs.MachineLearningOutlierDetectorAlgorithm>;
/**
* The id of the datasource to query.
*/
readonly datasourceId: pulumi.Output<number | undefined>;
/**
* The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
*/
readonly datasourceType: pulumi.Output<string>;
/**
* The uid of the datasource to query.
*/
readonly datasourceUid: pulumi.Output<string | undefined>;
/**
* A description of the outlier detector.
*/
readonly description: pulumi.Output<string | undefined>;
/**
* The data interval in seconds to monitor. Defaults to `300`.
*/
readonly interval: pulumi.Output<number | undefined>;
/**
* The metric used to query the outlier detector results.
*/
readonly metric: pulumi.Output<string>;
/**
* The name of the algorithm to use ('mad' or 'dbscan').
*/
readonly name: pulumi.Output<string>;
/**
* An object representing the query params to query Grafana with.
*/
readonly queryParams: pulumi.Output<{
[key: string]: any;
}>;
/**
* Create a MachineLearningOutlierDetector resource with the given unique name, arguments, and options.
*
* @param name The _unique_ name of the resource.
* @param args The arguments to use to populate this resource's properties.
* @param opts A bag of options that control this resource's behavior.
*/
constructor(name: string, args: MachineLearningOutlierDetectorArgs, opts?: pulumi.CustomResourceOptions);
}
/**
* Input properties used for looking up and filtering MachineLearningOutlierDetector resources.
*/
export interface MachineLearningOutlierDetectorState {
/**
* The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.
*/
algorithm?: pulumi.Input<inputs.MachineLearningOutlierDetectorAlgorithm>;
/**
* The id of the datasource to query.
*/
datasourceId?: pulumi.Input<number>;
/**
* The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
*/
datasourceType?: pulumi.Input<string>;
/**
* The uid of the datasource to query.
*/
datasourceUid?: pulumi.Input<string>;
/**
* A description of the outlier detector.
*/
description?: pulumi.Input<string>;
/**
* The data interval in seconds to monitor. Defaults to `300`.
*/
interval?: pulumi.Input<number>;
/**
* The metric used to query the outlier detector results.
*/
metric?: pulumi.Input<string>;
/**
* The name of the algorithm to use ('mad' or 'dbscan').
*/
name?: pulumi.Input<string>;
/**
* An object representing the query params to query Grafana with.
*/
queryParams?: pulumi.Input<{
[key: string]: any;
}>;
}
/**
* The set of arguments for constructing a MachineLearningOutlierDetector resource.
*/
export interface MachineLearningOutlierDetectorArgs {
/**
* The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details.
*/
algorithm: pulumi.Input<inputs.MachineLearningOutlierDetectorAlgorithm>;
/**
* The id of the datasource to query.
*/
datasourceId?: pulumi.Input<number>;
/**
* The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
*/
datasourceType: pulumi.Input<string>;
/**
* The uid of the datasource to query.
*/
datasourceUid?: pulumi.Input<string>;
/**
* A description of the outlier detector.
*/
description?: pulumi.Input<string>;
/**
* The data interval in seconds to monitor. Defaults to `300`.
*/
interval?: pulumi.Input<number>;
/**
* The metric used to query the outlier detector results.
*/
metric: pulumi.Input<string>;
/**
* The name of the algorithm to use ('mad' or 'dbscan').
*/
name?: pulumi.Input<string>;
/**
* An object representing the query params to query Grafana with.
*/
queryParams: pulumi.Input<{
[key: string]: any;
}>;
}