UNPKG

@langchain/openai

Version:
221 lines (219 loc) 8.18 kB
import { OpenAI as OpenAI$1 } from "openai"; import { DynamicStructuredTool } from "@langchain/core/tools"; import { z } from "zod/v4"; //#region src/tools/shell.d.ts /** * Re-export action type from OpenAI SDK for convenience. * The action contains command details like commands array, timeout, and max output length. */ type ShellAction = OpenAI$1.Responses.ResponseFunctionShellToolCall.Action; /** * Result of a single shell command execution. * Contains stdout, stderr, and the outcome (exit code or timeout). */ type ShellCommandOutput = OpenAI$1.Responses.ResponseFunctionShellCallOutputContent; /** * Outcome type for shell command execution - either exit with code or timeout. */ type ShellCallOutcome = ShellCommandOutput["outcome"]; /** * Result of executing shell commands. * Contains an array of outputs (one per command) and the max_output_length parameter. */ interface ShellResult { /** * Array of command outputs. Each entry corresponds to a command from the action. * The order should match the order of commands in the action. */ output: ShellCommandOutput[]; /** * The max_output_length from the action, which must be passed back to the API. * If not provided in the action, can be omitted. */ maxOutputLength?: number | null; } /** * Options for the Shell tool. */ interface ShellOptions { /** * Execute function that handles shell command execution. * This function receives the action input containing the commands and limits, * and should return a ShellResult with stdout, stderr, and outcome for each command. * * @example * ```typescript * execute: async (action) => { * const outputs = await Promise.all( * action.commands.map(async (cmd) => { * try { * const { stdout, stderr } = await exec(cmd, { * timeout: action.timeout_ms ?? undefined, * }); * return { * stdout, * stderr, * outcome: { type: "exit" as const, exit_code: 0 }, * }; * } catch (error) { * const timedOut = error.killed && error.signal === "SIGTERM"; * return { * stdout: error.stdout ?? "", * stderr: error.stderr ?? String(error), * outcome: timedOut * ? { type: "timeout" as const } * : { type: "exit" as const, exit_code: error.code ?? 1 }, * }; * } * }) * ); * return { * output: outputs, * maxOutputLength: action.max_output_length, * }; * } * ``` */ execute: (action: ShellAction) => ShellResult | Promise<ShellResult>; } /** * OpenAI Shell tool type for the Responses API. */ type ShellTool = OpenAI$1.Responses.FunctionShellTool; /** * Creates a Shell tool that allows models to run shell commands through your integration. * * The shell tool allows the model to interact with your local computer through a controlled * command-line interface. The model proposes shell commands; your integration executes them * and returns the outputs. This creates a simple plan-execute loop that lets models inspect * the system, run utilities, and gather data until they can finish the task. * * **Important**: The shell tool is available through the Responses API for use with `GPT-5.1`. * It is not available on other models, or via the Chat Completions API. * * **When to use**: * - **Automating filesystem or process diagnostics** – For example, "find the largest PDF * under ~/Documents" or "show running gunicorn processes." * - **Extending the model's capabilities** – Using built-in UNIX utilities, python runtime * and other CLIs in your environment. * - **Running multi-step build and test flows** – Chaining commands like `pip install` and `pytest`. * - **Complex agentic coding workflows** – Using other tools like `apply_patch` to complete * workflows that involve complex file operations. * * **How it works**: * The tool operates in a continuous loop: * 1. Model sends shell commands (`shell_call` with `commands` array) * 2. Your code executes the commands (can be concurrent) * 3. You return stdout, stderr, and outcome for each command * 4. Repeat until the task is complete * * **Security Warning**: Running arbitrary shell commands can be dangerous. * Always sandbox execution or add strict allow/deny-lists before forwarding * a command to the system shell. * * @see {@link https://platform.openai.com/docs/guides/tools-shell | OpenAI Shell Documentation} * @see {@link https://github.com/openai/codex | Codex CLI} for reference implementation. * * @param options - Configuration for the Shell tool * @returns A Shell tool that can be passed to `bindTools` * * @example * ```typescript * import { ChatOpenAI, tools } from "@langchain/openai"; * import { exec } from "child_process/promises"; * * const model = new ChatOpenAI({ model: "gpt-5.1" }); * * // With execute callback for automatic command handling * const shellTool = tools.shell({ * execute: async (action) => { * const outputs = await Promise.all( * action.commands.map(async (cmd) => { * try { * const { stdout, stderr } = await exec(cmd, { * timeout: action.timeout_ms ?? undefined, * }); * return { * stdout, * stderr, * outcome: { type: "exit" as const, exit_code: 0 }, * }; * } catch (error) { * const timedOut = error.killed && error.signal === "SIGTERM"; * return { * stdout: error.stdout ?? "", * stderr: error.stderr ?? String(error), * outcome: timedOut * ? { type: "timeout" as const } * : { type: "exit" as const, exit_code: error.code ?? 1 }, * }; * } * }) * ); * return { * output: outputs, * maxOutputLength: action.max_output_length, * }; * }, * }); * * const llmWithShell = model.bindTools([shellTool]); * const response = await llmWithShell.invoke( * "Find the largest PDF file in ~/Documents" * ); * ``` * * @example * ```typescript * // Full shell loop example * async function shellLoop(model, task) { * let response = await model.invoke(task, { * tools: [tools.shell({ execute: myExecutor })], * }); * * while (true) { * const shellCall = response.additional_kwargs.tool_outputs?.find( * (output) => output.type === "shell_call" * ); * * if (!shellCall) break; * * // Execute commands (with proper sandboxing!) * const result = await executeCommands(shellCall.action); * * // Send output back to model * response = await model.invoke([ * response, * { * type: "shell_call_output", * call_id: shellCall.call_id, * output: result.output, * max_output_length: result.maxOutputLength, * }, * ], { * tools: [tools.shell({ execute: myExecutor })], * }); * } * * return response; * } * ``` * * @remarks * - Only available through the Responses API (not Chat Completions) * - Designed for use with `gpt-5.1` model * - Commands are provided as an array of strings that can be executed concurrently * - Action includes: `commands`, `timeout_ms`, `max_output_length` * - Always sandbox or validate commands before execution * - The `timeout_ms` from the model is only a hint—enforce your own limits * - If `max_output_length` exists in the action, always pass it back in the output * - Many CLI tools return non-zero exit codes for warnings; still capture stdout/stderr */ declare function shell(options: ShellOptions): DynamicStructuredTool<z.ZodObject<{ commands: z.ZodArray<z.ZodString>; timeout_ms: z.ZodOptional<z.ZodNumber>; max_output_length: z.ZodOptional<z.ZodNumber>; }, z.core.$strip>, OpenAI$1.Responses.ResponseFunctionShellToolCall.Action, unknown, string>; //#endregion export { ShellAction, ShellCallOutcome, ShellCommandOutput, ShellOptions, ShellResult, ShellTool, shell }; //# sourceMappingURL=shell.d.cts.map