@langchain/openai
Version:
OpenAI integrations for LangChain.js
144 lines (142 loc) • 5.4 kB
JavaScript
const require_rolldown_runtime = require('./_virtual/rolldown_runtime.cjs');
const require_client = require('./utils/client.cjs');
const require_azure = require('./utils/azure.cjs');
const openai = require_rolldown_runtime.__toESM(require("openai"));
const __langchain_core_utils_env = require_rolldown_runtime.__toESM(require("@langchain/core/utils/env"));
const __langchain_core_utils_chunk_array = require_rolldown_runtime.__toESM(require("@langchain/core/utils/chunk_array"));
const __langchain_core_embeddings = require_rolldown_runtime.__toESM(require("@langchain/core/embeddings"));
//#region src/embeddings.ts
/**
* Class for generating embeddings using the OpenAI API.
*
* To use with Azure, import the `AzureOpenAIEmbeddings` class.
*
* @example
* ```typescript
* // Embed a query using OpenAIEmbeddings to generate embeddings for a given text
* const model = new OpenAIEmbeddings();
* const res = await model.embedQuery(
* "What would be a good company name for a company that makes colorful socks?",
* );
* console.log({ res });
*
* ```
*/
var OpenAIEmbeddings = class extends __langchain_core_embeddings.Embeddings {
model = "text-embedding-ada-002";
/** @deprecated Use "model" instead */
modelName;
batchSize = 512;
stripNewLines = true;
/**
* The number of dimensions the resulting output embeddings should have.
* Only supported in `text-embedding-3` and later models.
*/
dimensions;
timeout;
organization;
encodingFormat;
client;
clientConfig;
apiKey;
constructor(fields) {
const fieldsWithDefaults = {
maxConcurrency: 2,
...fields
};
super(fieldsWithDefaults);
const apiKey = fieldsWithDefaults?.apiKey ?? fieldsWithDefaults?.openAIApiKey ?? (0, __langchain_core_utils_env.getEnvironmentVariable)("OPENAI_API_KEY");
this.organization = fieldsWithDefaults?.configuration?.organization ?? (0, __langchain_core_utils_env.getEnvironmentVariable)("OPENAI_ORGANIZATION");
this.model = fieldsWithDefaults?.model ?? fieldsWithDefaults?.modelName ?? this.model;
this.modelName = this.model;
this.batchSize = fieldsWithDefaults?.batchSize ?? this.batchSize;
this.stripNewLines = fieldsWithDefaults?.stripNewLines ?? this.stripNewLines;
this.timeout = fieldsWithDefaults?.timeout;
this.dimensions = fieldsWithDefaults?.dimensions;
this.encodingFormat = fieldsWithDefaults?.encodingFormat;
this.clientConfig = {
apiKey,
organization: this.organization,
dangerouslyAllowBrowser: true,
...fields?.configuration
};
}
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the OpenAI API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
async embedDocuments(texts) {
const batches = (0, __langchain_core_utils_chunk_array.chunkArray)(this.stripNewLines ? texts.map((t) => t.replace(/\n/g, " ")) : texts, this.batchSize);
const batchRequests = batches.map((batch) => {
const params = {
model: this.model,
input: batch
};
if (this.dimensions) params.dimensions = this.dimensions;
if (this.encodingFormat) params.encoding_format = this.encodingFormat;
return this.embeddingWithRetry(params);
});
const batchResponses = await Promise.all(batchRequests);
const embeddings = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batch = batches[i];
const { data: batchResponse } = batchResponses[i];
for (let j = 0; j < batch.length; j += 1) embeddings.push(batchResponse[j].embedding);
}
return embeddings;
}
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param text Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the document.
*/
async embedQuery(text) {
const params = {
model: this.model,
input: this.stripNewLines ? text.replace(/\n/g, " ") : text
};
if (this.dimensions) params.dimensions = this.dimensions;
if (this.encodingFormat) params.encoding_format = this.encodingFormat;
const { data } = await this.embeddingWithRetry(params);
return data[0].embedding;
}
/**
* Private method to make a request to the OpenAI API to generate
* embeddings. Handles the retry logic and returns the response from the
* API.
* @param request Request to send to the OpenAI API.
* @returns Promise that resolves to the response from the API.
*/
async embeddingWithRetry(request) {
if (!this.client) {
const openAIEndpointConfig = { baseURL: this.clientConfig.baseURL };
const endpoint = require_azure.getEndpoint(openAIEndpointConfig);
const params = {
...this.clientConfig,
baseURL: endpoint,
timeout: this.timeout,
maxRetries: 0
};
if (!params.baseURL) delete params.baseURL;
params.defaultHeaders = require_azure.getHeadersWithUserAgent(params.defaultHeaders);
this.client = new openai.OpenAI(params);
}
const requestOptions = {};
return this.caller.call(async () => {
try {
const res = await this.client.embeddings.create(request, requestOptions);
return res;
} catch (e) {
const error = require_client.wrapOpenAIClientError(e);
throw error;
}
});
}
};
//#endregion
exports.OpenAIEmbeddings = OpenAIEmbeddings;
//# sourceMappingURL=embeddings.cjs.map