UNPKG

@langchain/openai

Version:
604 lines (602 loc) 23.5 kB
import { getRequiredFilenameFromMetadata, isReasoningModel, messageToOpenAIRole } from "../utils/misc.js"; import { handleMultiModalOutput } from "../utils/output.js"; import { AIMessage, AIMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessageChunk, HumanMessageChunk, SystemMessageChunk, ToolMessage, ToolMessageChunk, convertToProviderContentBlock, iife, isDataContentBlock, parseBase64DataUrl, parseMimeType } from "@langchain/core/messages"; import { convertLangChainToolCallToOpenAI, makeInvalidToolCall, parseToolCall } from "@langchain/core/output_parsers/openai_tools"; //#region src/converters/completions.ts /** * @deprecated This converter is an internal detail of the OpenAI provider. Do not use it directly. This will be revisited in a future release. */ const completionsApiContentBlockConverter = { providerName: "ChatOpenAI", fromStandardTextBlock(block) { return { type: "text", text: block.text }; }, fromStandardImageBlock(block) { if (block.source_type === "url") return { type: "image_url", image_url: { url: block.url, ...block.metadata?.detail ? { detail: block.metadata.detail } : {} } }; if (block.source_type === "base64") { const url = `data:${block.mime_type ?? ""};base64,${block.data}`; return { type: "image_url", image_url: { url, ...block.metadata?.detail ? { detail: block.metadata.detail } : {} } }; } throw new Error(`Image content blocks with source_type ${block.source_type} are not supported for ChatOpenAI`); }, fromStandardAudioBlock(block) { if (block.source_type === "url") { const data = parseBase64DataUrl({ dataUrl: block.url }); if (!data) throw new Error(`URL audio blocks with source_type ${block.source_type} must be formatted as a data URL for ChatOpenAI`); const rawMimeType = data.mime_type || block.mime_type || ""; let mimeType; try { mimeType = parseMimeType(rawMimeType); } catch { throw new Error(`Audio blocks with source_type ${block.source_type} must have mime type of audio/wav or audio/mp3`); } if (mimeType.type !== "audio" || mimeType.subtype !== "wav" && mimeType.subtype !== "mp3") throw new Error(`Audio blocks with source_type ${block.source_type} must have mime type of audio/wav or audio/mp3`); return { type: "input_audio", input_audio: { format: mimeType.subtype, data: data.data } }; } if (block.source_type === "base64") { let mimeType; try { mimeType = parseMimeType(block.mime_type ?? ""); } catch { throw new Error(`Audio blocks with source_type ${block.source_type} must have mime type of audio/wav or audio/mp3`); } if (mimeType.type !== "audio" || mimeType.subtype !== "wav" && mimeType.subtype !== "mp3") throw new Error(`Audio blocks with source_type ${block.source_type} must have mime type of audio/wav or audio/mp3`); return { type: "input_audio", input_audio: { format: mimeType.subtype, data: block.data } }; } throw new Error(`Audio content blocks with source_type ${block.source_type} are not supported for ChatOpenAI`); }, fromStandardFileBlock(block) { if (block.source_type === "url") { const data = parseBase64DataUrl({ dataUrl: block.url }); const filename = getRequiredFilenameFromMetadata(block); if (!data) throw new Error(`URL file blocks with source_type ${block.source_type} must be formatted as a data URL for ChatOpenAI`); return { type: "file", file: { file_data: block.url, ...block.metadata?.filename || block.metadata?.name ? { filename } : {} } }; } if (block.source_type === "base64") { const filename = getRequiredFilenameFromMetadata(block); return { type: "file", file: { file_data: `data:${block.mime_type ?? ""};base64,${block.data}`, ...block.metadata?.filename || block.metadata?.name || block.metadata?.title ? { filename } : {} } }; } if (block.source_type === "id") return { type: "file", file: { file_id: block.id } }; throw new Error(`File content blocks with source_type ${block.source_type} are not supported for ChatOpenAI`); } }; /** * Converts an OpenAI Chat Completions API message to a LangChain BaseMessage. * * This converter transforms messages from OpenAI's Chat Completions API format into * LangChain's internal message representation, handling various message types and * preserving metadata, tool calls, and other relevant information. * * @remarks * The converter handles the following message roles: * - `assistant`: Converted to {@link AIMessage} with support for tool calls, function calls, * audio content, and multi-modal outputs * - Other roles: Converted to generic {@link ChatMessage} * * For assistant messages, the converter: * - Parses and validates tool calls, separating valid and invalid calls * - Preserves function call information in additional_kwargs * - Includes usage statistics and system fingerprint in response_metadata * - Handles multi-modal content (text, images, audio) * - Optionally includes the raw API response for debugging * * @param params - Conversion parameters * @param params.message - The OpenAI chat completion message to convert * @param params.rawResponse - The complete raw response from OpenAI's API, used to extract * metadata like model name, usage statistics, and system fingerprint * @param params.includeRawResponse - If true, includes the raw OpenAI response in the * message's additional_kwargs under the `__raw_response` key. Useful for debugging * or accessing provider-specific fields. Defaults to false. * * @returns A LangChain BaseMessage instance: * - {@link AIMessage} for assistant messages with tool calls, metadata, and content * - {@link ChatMessage} for all other message types * * @example * ```typescript * const baseMessage = convertCompletionsMessageToBaseMessage({ * message: { * role: "assistant", * content: "Hello! How can I help you?", * tool_calls: [ * { * id: "call_123", * type: "function", * function: { name: "get_weather", arguments: '{"location":"NYC"}' } * } * ] * }, * rawResponse: completionResponse, * includeRawResponse: true * }); * // Returns an AIMessage with parsed tool calls and metadata * ``` * * @throws {Error} If tool call parsing fails, the invalid tool call is captured in * the `invalid_tool_calls` array rather than throwing an error * */ const convertCompletionsMessageToBaseMessage = ({ message, rawResponse, includeRawResponse }) => { const rawToolCalls = message.tool_calls; switch (message.role) { case "assistant": { const toolCalls = []; const invalidToolCalls = []; for (const rawToolCall of rawToolCalls ?? []) try { toolCalls.push(parseToolCall(rawToolCall, { returnId: true })); } catch (e) { invalidToolCalls.push(makeInvalidToolCall(rawToolCall, e.message)); } const additional_kwargs = { function_call: message.function_call, tool_calls: rawToolCalls }; if (includeRawResponse !== void 0) additional_kwargs.__raw_response = rawResponse; const response_metadata = { model_provider: "openai", model_name: rawResponse.model, ...rawResponse.system_fingerprint ? { usage: { ...rawResponse.usage }, system_fingerprint: rawResponse.system_fingerprint } : {} }; if (message.audio) additional_kwargs.audio = message.audio; const content = handleMultiModalOutput(message.content || "", rawResponse.choices?.[0]?.message); return new AIMessage({ content, tool_calls: toolCalls, invalid_tool_calls: invalidToolCalls, additional_kwargs, response_metadata, id: rawResponse.id }); } default: return new ChatMessage(message.content || "", message.role ?? "unknown"); } }; /** * Converts an OpenAI Chat Completions API delta (streaming chunk) to a LangChain BaseMessageChunk. * * This converter is used during streaming responses to transform incremental updates from OpenAI's * Chat Completions API into LangChain message chunks. It handles various message types, tool calls, * function calls, audio content, and role-specific message chunk creation. * * @param params - Conversion parameters * @param params.delta - The delta object from an OpenAI streaming chunk containing incremental * message updates. May include content, role, tool_calls, function_call, audio, etc. * @param params.rawResponse - The complete raw ChatCompletionChunk response from OpenAI, * containing metadata like model info, usage stats, and the delta * @param params.includeRawResponse - Optional flag to include the raw OpenAI response in the * message chunk's additional_kwargs. Useful for debugging or accessing provider-specific data * @param params.defaultRole - Optional default role to use if the delta doesn't specify one. * Typically used to maintain role consistency across chunks in a streaming response * * @returns A BaseMessageChunk subclass appropriate for the message role: * - HumanMessageChunk for "user" role * - AIMessageChunk for "assistant" role (includes tool call chunks) * - SystemMessageChunk for "system" or "developer" roles * - FunctionMessageChunk for "function" role * - ToolMessageChunk for "tool" role * - ChatMessageChunk for any other role * * @example * Basic streaming text chunk: * ```typescript * const chunk = convertCompletionsDeltaToBaseMessageChunk({ * delta: { role: "assistant", content: "Hello" }, * rawResponse: { id: "chatcmpl-123", model: "gpt-4", ... } * }); * // Returns: AIMessageChunk with content "Hello" * ``` * * @example * Streaming chunk with tool call: * ```typescript * const chunk = convertCompletionsDeltaToBaseMessageChunk({ * delta: { * role: "assistant", * tool_calls: [{ * index: 0, * id: "call_123", * function: { name: "get_weather", arguments: '{"location":' } * }] * }, * rawResponse: { id: "chatcmpl-123", ... } * }); * // Returns: AIMessageChunk with tool_call_chunks containing partial tool call data * ``` * * @remarks * - Tool calls are converted to ToolCallChunk objects with incremental data * - Audio content includes the chunk index from the raw response * - The "developer" role is mapped to SystemMessageChunk with a special marker * - Response metadata includes model provider info and usage statistics * - Function calls and tool calls are stored in additional_kwargs for compatibility */ const convertCompletionsDeltaToBaseMessageChunk = ({ delta, rawResponse, includeRawResponse, defaultRole }) => { const role = delta.role ?? defaultRole; const content = delta.content ?? ""; let additional_kwargs; if (delta.function_call) additional_kwargs = { function_call: delta.function_call }; else if (delta.tool_calls) additional_kwargs = { tool_calls: delta.tool_calls }; else additional_kwargs = {}; if (includeRawResponse) additional_kwargs.__raw_response = rawResponse; if (delta.audio) additional_kwargs.audio = { ...delta.audio, index: rawResponse.choices[0].index }; const response_metadata = { model_provider: "openai", usage: { ...rawResponse.usage } }; if (role === "user") return new HumanMessageChunk({ content, response_metadata }); else if (role === "assistant") { const toolCallChunks = []; if (Array.isArray(delta.tool_calls)) for (const rawToolCall of delta.tool_calls) toolCallChunks.push({ name: rawToolCall.function?.name, args: rawToolCall.function?.arguments, id: rawToolCall.id, index: rawToolCall.index, type: "tool_call_chunk" }); return new AIMessageChunk({ content, tool_call_chunks: toolCallChunks, additional_kwargs, id: rawResponse.id, response_metadata }); } else if (role === "system") return new SystemMessageChunk({ content, response_metadata }); else if (role === "developer") return new SystemMessageChunk({ content, response_metadata, additional_kwargs: { __openai_role__: "developer" } }); else if (role === "function") return new FunctionMessageChunk({ content, additional_kwargs, name: delta.name, response_metadata }); else if (role === "tool") return new ToolMessageChunk({ content, additional_kwargs, tool_call_id: delta.tool_call_id, response_metadata }); else return new ChatMessageChunk({ content, role, response_metadata }); }; /** * Converts a standard LangChain content block to an OpenAI Completions API content part. * * This converter transforms LangChain's standardized content blocks (image, audio, file) * into the format expected by OpenAI's Chat Completions API. It handles various content * types including images (URL or base64), audio (base64), and files (data or file ID). * * @param block - The standard content block to convert. Can be an image, audio, or file block. * * @returns An OpenAI Chat Completions content part object, or undefined if the block * cannot be converted (e.g., missing required data). * * @example * Image with URL: * ```typescript * const block = { type: "image", url: "https://example.com/image.jpg" }; * const part = convertStandardContentBlockToCompletionsContentPart(block); * // Returns: { type: "image_url", image_url: { url: "https://example.com/image.jpg" } } * ``` * * @example * Image with base64 data: * ```typescript * const block = { type: "image", data: "iVBORw0KGgo...", mimeType: "image/png" }; * const part = convertStandardContentBlockToCompletionsContentPart(block); * // Returns: { type: "image_url", image_url: { url: "..." } } * ``` */ const convertStandardContentBlockToCompletionsContentPart = (block) => { if (block.type === "image") { if (block.url) return { type: "image_url", image_url: { url: block.url } }; else if (block.data) return { type: "image_url", image_url: { url: `data:${block.mimeType};base64,${block.data}` } }; } if (block.type === "audio") { if (block.data) { const format = iife(() => { const [, format$1] = block.mimeType.split("/"); if (format$1 === "wav" || format$1 === "mp3") return format$1; return "wav"; }); return { type: "input_audio", input_audio: { data: block.data.toString(), format } }; } } if (block.type === "file") { if (block.data) { const filename = getRequiredFilenameFromMetadata(block); return { type: "file", file: { file_data: `data:${block.mimeType};base64,${block.data}`, filename } }; } if (block.fileId) return { type: "file", file: { file_id: block.fileId } }; } return void 0; }; /** * Converts a LangChain BaseMessage with standard content blocks to an OpenAI Chat Completions API message parameter. * * This converter transforms LangChain's standardized message format (using contentBlocks) into the format * expected by OpenAI's Chat Completions API. It handles role mapping, content filtering, and multi-modal * content conversion for various message types. * * @remarks * The converter performs the following transformations: * - Maps LangChain message roles to OpenAI API roles (user, assistant, system, developer, tool, function) * - For reasoning models, automatically converts "system" role to "developer" role * - Filters content blocks based on message role (most roles only include text blocks) * - For user messages, converts multi-modal content blocks (images, audio, files) to OpenAI format * - Preserves tool call IDs for tool messages and function names for function messages * * Role-specific behavior: * - **developer**: Returns only text content blocks (used for reasoning models) * - **system**: Returns only text content blocks * - **assistant**: Returns only text content blocks * - **tool**: Returns only text content blocks with tool_call_id preserved * - **function**: Returns text content blocks joined as a single string with function name * - **user** (default): Returns multi-modal content including text, images, audio, and files * * @param params - Conversion parameters * @param params.message - The LangChain BaseMessage to convert. Must have contentBlocks property * containing an array of standard content blocks (text, image, audio, file, etc.) * @param params.model - Optional model name. Used to determine if special role mapping is needed * (e.g., "system" -> "developer" for reasoning models like o1) * * @returns An OpenAI ChatCompletionMessageParam object formatted for the Chat Completions API. * The structure varies by role: * - Developer/System/Assistant: `{ role, content: TextBlock[] }` * - Tool: `{ role: "tool", tool_call_id, content: TextBlock[] }` * - Function: `{ role: "function", name, content: string }` * - User: `{ role: "user", content: Array<TextPart | ImagePart | AudioPart | FilePart> }` * * @example * Simple text message: * ```typescript * const message = new HumanMessage({ * content: [{ type: "text", text: "Hello!" }] * }); * const param = convertStandardContentMessageToCompletionsMessage({ message }); * // Returns: { role: "user", content: [{ type: "text", text: "Hello!" }] } * ``` * * @example * Multi-modal user message with image: * ```typescript * const message = new HumanMessage({ * content: [ * { type: "text", text: "What's in this image?" }, * { type: "image", url: "https://example.com/image.jpg" } * ] * }); * const param = convertStandardContentMessageToCompletionsMessage({ message }); * // Returns: { * // role: "user", * // content: [ * // { type: "text", text: "What's in this image?" }, * // { type: "image_url", image_url: { url: "https://example.com/image.jpg" } } * // ] * // } * ``` */ const convertStandardContentMessageToCompletionsMessage = ({ message, model }) => { let role = messageToOpenAIRole(message); if (role === "system" && isReasoningModel(model)) role = "developer"; if (role === "developer") return { role: "developer", content: message.contentBlocks.filter((block) => block.type === "text") }; else if (role === "system") return { role: "system", content: message.contentBlocks.filter((block) => block.type === "text") }; else if (role === "assistant") return { role: "assistant", content: message.contentBlocks.filter((block) => block.type === "text") }; else if (role === "tool" && ToolMessage.isInstance(message)) return { role: "tool", tool_call_id: message.tool_call_id, content: message.contentBlocks.filter((block) => block.type === "text") }; else if (role === "function") return { role: "function", name: message.name ?? "", content: message.contentBlocks.filter((block) => block.type === "text").join("") }; function* iterateUserContent(blocks) { for (const block of blocks) { if (block.type === "text") yield { type: "text", text: block.text }; const data = convertStandardContentBlockToCompletionsContentPart(block); if (data) yield data; } } return { role: "user", content: Array.from(iterateUserContent(message.contentBlocks)) }; }; /** * Converts an array of LangChain BaseMessages to OpenAI Chat Completions API message parameters. * * This converter transforms LangChain's internal message representation into the format required * by OpenAI's Chat Completions API. It handles various message types, roles, content formats, * tool calls, function calls, audio messages, and special model-specific requirements. * * @remarks * The converter performs several key transformations: * - Maps LangChain message types to OpenAI roles (user, assistant, system, tool, function, developer) * - Converts standard content blocks (v1 format) using a specialized converter * - Handles multimodal content including text, images, audio, and data blocks * - Preserves tool calls and function calls with proper formatting * - Applies model-specific role mappings (e.g., "system" → "developer" for reasoning models) * - Splits audio messages into separate message parameters when needed * * @param params - Conversion parameters * @param params.messages - Array of LangChain BaseMessages to convert. Can include any message * type: HumanMessage, AIMessage, SystemMessage, ToolMessage, FunctionMessage, etc. * @param params.model - Optional model name used to determine if special role mapping is needed. * For reasoning models (o1, o3, etc.), "system" role is converted to "developer" role. * * @returns Array of ChatCompletionMessageParam objects formatted for OpenAI's Chat Completions API. * Some messages may be split into multiple parameters (e.g., audio messages). * * @example * Basic message conversion: * ```typescript * const messages = [ * new HumanMessage("What's the weather like?"), * new AIMessage("Let me check that for you.") * ]; * * const params = convertMessagesToCompletionsMessageParams({ * messages, * model: "gpt-4" * }); * // Returns: * // [ * // { role: "user", content: "What's the weather like?" }, * // { role: "assistant", content: "Let me check that for you." } * // ] * ``` * * @example * Message with tool calls: * ```typescript * const messages = [ * new AIMessage({ * content: "", * tool_calls: [{ * id: "call_123", * name: "get_weather", * args: { location: "San Francisco" } * }] * }) * ]; * * const params = convertMessagesToCompletionsMessageParams({ messages }); * // Returns: * // [{ * // role: "assistant", * // content: "", * // tool_calls: [{ * // id: "call_123", * // type: "function", * // function: { name: "get_weather", arguments: '{"location":"San Francisco"}' } * // }] * // }] * ``` */ const convertMessagesToCompletionsMessageParams = ({ messages, model }) => { return messages.flatMap((message) => { if ("output_version" in message.response_metadata && message.response_metadata?.output_version === "v1") return convertStandardContentMessageToCompletionsMessage({ message }); let role = messageToOpenAIRole(message); if (role === "system" && isReasoningModel(model)) role = "developer"; const content = typeof message.content === "string" ? message.content : message.content.map((m) => { if (isDataContentBlock(m)) return convertToProviderContentBlock(m, completionsApiContentBlockConverter); return m; }); const completionParam = { role, content }; if (message.name != null) completionParam.name = message.name; if (message.additional_kwargs.function_call != null) completionParam.function_call = message.additional_kwargs.function_call; if (AIMessage.isInstance(message) && !!message.tool_calls?.length) completionParam.tool_calls = message.tool_calls.map(convertLangChainToolCallToOpenAI); else { if (message.additional_kwargs.tool_calls != null) completionParam.tool_calls = message.additional_kwargs.tool_calls; if (ToolMessage.isInstance(message) && message.tool_call_id != null) completionParam.tool_call_id = message.tool_call_id; } if (message.additional_kwargs.audio && typeof message.additional_kwargs.audio === "object" && "id" in message.additional_kwargs.audio) { const audioMessage = { role: "assistant", audio: { id: message.additional_kwargs.audio.id } }; return [completionParam, audioMessage]; } return completionParam; }); }; //#endregion export { completionsApiContentBlockConverter, convertCompletionsDeltaToBaseMessageChunk, convertCompletionsMessageToBaseMessage, convertMessagesToCompletionsMessageParams, convertStandardContentBlockToCompletionsContentPart, convertStandardContentMessageToCompletionsMessage }; //# sourceMappingURL=completions.js.map