@langchain/anthropic
Version:
Anthropic integrations for LangChain.js
292 lines (291 loc) • 11.1 kB
JavaScript
/**
* This util file contains functions for converting LangChain messages to Anthropic messages.
*/
import { HumanMessage, isAIMessage, } from "@langchain/core/messages";
function _formatImage(imageUrl) {
const regex = /^data:(image\/.+);base64,(.+)$/;
const match = imageUrl.match(regex);
if (match === null) {
throw new Error([
"Anthropic only supports base64-encoded images currently.",
"Example: ...",
].join("\n\n"));
}
return {
type: "base64",
media_type: match[1] ?? "",
data: match[2] ?? "",
// eslint-disable-next-line @typescript-eslint/no-explicit-any
};
}
function _ensureMessageContents(messages) {
// Merge runs of human/tool messages into single human messages with content blocks.
const updatedMsgs = [];
for (const message of messages) {
if (message._getType() === "tool") {
if (typeof message.content === "string") {
const previousMessage = updatedMsgs[updatedMsgs.length - 1];
if (previousMessage?._getType() === "human" &&
Array.isArray(previousMessage.content) &&
"type" in previousMessage.content[0] &&
previousMessage.content[0].type === "tool_result") {
// If the previous message was a tool result, we merge this tool message into it.
previousMessage.content.push({
type: "tool_result",
content: message.content,
tool_use_id: message.tool_call_id,
});
}
else {
// If not, we create a new human message with the tool result.
updatedMsgs.push(new HumanMessage({
content: [
{
type: "tool_result",
content: message.content,
tool_use_id: message.tool_call_id,
},
],
}));
}
}
else {
updatedMsgs.push(new HumanMessage({
content: [
{
type: "tool_result",
content: _formatContent(message.content),
tool_use_id: message.tool_call_id,
},
],
}));
}
}
else {
updatedMsgs.push(message);
}
}
return updatedMsgs;
}
export function _convertLangChainToolCallToAnthropic(toolCall) {
if (toolCall.id === undefined) {
throw new Error(`Anthropic requires all tool calls to have an "id".`);
}
return {
type: "tool_use",
id: toolCall.id,
name: toolCall.name,
input: toolCall.args,
};
}
function _formatContent(content) {
const toolTypes = ["tool_use", "tool_result", "input_json_delta"];
const textTypes = ["text", "text_delta"];
if (typeof content === "string") {
return content;
}
else {
const contentBlocks = content.map((contentPart) => {
const cacheControl = "cache_control" in contentPart ? contentPart.cache_control : undefined;
if (contentPart.type === "image_url") {
let source;
if (typeof contentPart.image_url === "string") {
source = _formatImage(contentPart.image_url);
}
else {
source = _formatImage(contentPart.image_url.url);
}
return {
type: "image",
source,
...(cacheControl ? { cache_control: cacheControl } : {}),
};
}
else if (contentPart.type === "document") {
// PDF
return {
...contentPart,
...(cacheControl ? { cache_control: cacheControl } : {}),
};
}
else if (contentPart.type === "thinking") {
const block = {
type: "thinking",
thinking: contentPart.thinking,
signature: contentPart.signature,
...(cacheControl ? { cache_control: cacheControl } : {}),
};
return block;
}
else if (contentPart.type === "redacted_thinking") {
const block = {
type: "redacted_thinking",
data: contentPart.data,
...(cacheControl ? { cache_control: cacheControl } : {}),
};
return block;
}
else if (textTypes.find((t) => t === contentPart.type) &&
"text" in contentPart) {
// Assuming contentPart is of type MessageContentText here
return {
type: "text",
text: contentPart.text,
...(cacheControl ? { cache_control: cacheControl } : {}),
};
}
else if (toolTypes.find((t) => t === contentPart.type)) {
const contentPartCopy = { ...contentPart };
if ("index" in contentPartCopy) {
// Anthropic does not support passing the index field here, so we remove it.
delete contentPartCopy.index;
}
if (contentPartCopy.type === "input_json_delta") {
// `input_json_delta` type only represents yielding partial tool inputs
// and is not a valid type for Anthropic messages.
contentPartCopy.type = "tool_use";
}
if ("input" in contentPartCopy) {
// Anthropic tool use inputs should be valid objects, when applicable.
try {
contentPartCopy.input = JSON.parse(contentPartCopy.input);
}
catch {
// no-op
}
}
// TODO: Fix when SDK types are fixed
return {
...contentPartCopy,
...(cacheControl ? { cache_control: cacheControl } : {}),
// eslint-disable-next-line @typescript-eslint/no-explicit-any
};
}
else {
throw new Error("Unsupported message content format");
}
});
return contentBlocks;
}
}
/**
* Formats messages as a prompt for the model.
* Used in LangSmith, export is important here.
* @param messages The base messages to format as a prompt.
* @returns The formatted prompt.
*/
export function _convertMessagesToAnthropicPayload(messages) {
const mergedMessages = _ensureMessageContents(messages);
let system;
if (mergedMessages.length > 0 && mergedMessages[0]._getType() === "system") {
system = messages[0].content;
}
const conversationMessages = system !== undefined ? mergedMessages.slice(1) : mergedMessages;
const formattedMessages = conversationMessages.map((message) => {
let role;
if (message._getType() === "human") {
role = "user";
}
else if (message._getType() === "ai") {
role = "assistant";
}
else if (message._getType() === "tool") {
role = "user";
}
else if (message._getType() === "system") {
throw new Error("System messages are only permitted as the first passed message.");
}
else {
throw new Error(`Message type "${message._getType()}" is not supported.`);
}
if (isAIMessage(message) && !!message.tool_calls?.length) {
if (typeof message.content === "string") {
if (message.content === "") {
return {
role,
content: message.tool_calls.map(_convertLangChainToolCallToAnthropic),
};
}
else {
return {
role,
content: [
{ type: "text", text: message.content },
...message.tool_calls.map(_convertLangChainToolCallToAnthropic),
],
};
}
}
else {
const { content } = message;
const hasMismatchedToolCalls = !message.tool_calls.every((toolCall) => content.find((contentPart) => (contentPart.type === "tool_use" ||
contentPart.type === "input_json_delta") &&
contentPart.id === toolCall.id));
if (hasMismatchedToolCalls) {
console.warn(`The "tool_calls" field on a message is only respected if content is a string.`);
}
return {
role,
content: _formatContent(message.content),
};
}
}
else {
return {
role,
content: _formatContent(message.content),
};
}
});
return {
messages: mergeMessages(formattedMessages),
system,
};
}
function mergeMessages(messages) {
if (!messages || messages.length <= 1) {
return messages;
}
const result = [];
let currentMessage = messages[0];
const normalizeContent = (content) => {
if (typeof content === "string") {
return [
{
type: "text",
text: content,
},
];
}
return content;
};
const isToolResultMessage = (msg) => {
if (msg.role !== "user")
return false;
if (typeof msg.content === "string") {
return false;
}
return (Array.isArray(msg.content) &&
msg.content.every((item) => item.type === "tool_result"));
};
for (let i = 1; i < messages.length; i += 1) {
const nextMessage = messages[i];
if (isToolResultMessage(currentMessage) &&
isToolResultMessage(nextMessage)) {
// Merge the messages by combining their content arrays
currentMessage = {
...currentMessage,
content: [
...normalizeContent(currentMessage.content),
...normalizeContent(nextMessage.content),
],
};
}
else {
result.push(currentMessage);
currentMessage = nextMessage;
}
}
result.push(currentMessage);
return result;
}