@labelbox/polygon-clipping
Version:
Apply boolean Polygon clipping operations (intersection, union, difference, xor) to your Polygons & MultiPolygons.
1,677 lines (1,382 loc) • 80.1 kB
JavaScript
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('robust-predicates/umd/orient2d')) :
typeof define === 'function' && define.amd ? define(['robust-predicates/umd/orient2d'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.polygonClipping = factory(global.orient2d));
})(this, (function (orient2d) { 'use strict';
function _classCallCheck(instance, Constructor) {
if (!(instance instanceof Constructor)) {
throw new TypeError("Cannot call a class as a function");
}
}
function _defineProperties(target, props) {
for (var i = 0; i < props.length; i++) {
var descriptor = props[i];
descriptor.enumerable = descriptor.enumerable || false;
descriptor.configurable = true;
if ("value" in descriptor) descriptor.writable = true;
Object.defineProperty(target, descriptor.key, descriptor);
}
}
function _createClass(Constructor, protoProps, staticProps) {
if (protoProps) _defineProperties(Constructor.prototype, protoProps);
if (staticProps) _defineProperties(Constructor, staticProps);
Object.defineProperty(Constructor, "prototype", {
writable: false
});
return Constructor;
}
/**
* splaytree v3.1.0
* Fast Splay tree for Node and browser
*
* @author Alexander Milevski <info@w8r.name>
* @license MIT
* @preserve
*/
var Node =
/** @class */
function () {
function Node(key, data) {
this.next = null;
this.key = key;
this.data = data;
this.left = null;
this.right = null;
}
return Node;
}();
/* follows "An implementation of top-down splaying"
* by D. Sleator <sleator@cs.cmu.edu> March 1992
*/
function DEFAULT_COMPARE(a, b) {
return a > b ? 1 : a < b ? -1 : 0;
}
/**
* Simple top down splay, not requiring i to be in the tree t.
*/
function splay(i, t, comparator) {
var N = new Node(null, null);
var l = N;
var r = N;
while (true) {
var cmp = comparator(i, t.key); //if (i < t.key) {
if (cmp < 0) {
if (t.left === null) break; //if (i < t.left.key) {
if (comparator(i, t.left.key) < 0) {
var y = t.left;
/* rotate right */
t.left = y.right;
y.right = t;
t = y;
if (t.left === null) break;
}
r.left = t;
/* link right */
r = t;
t = t.left; //} else if (i > t.key) {
} else if (cmp > 0) {
if (t.right === null) break; //if (i > t.right.key) {
if (comparator(i, t.right.key) > 0) {
var y = t.right;
/* rotate left */
t.right = y.left;
y.left = t;
t = y;
if (t.right === null) break;
}
l.right = t;
/* link left */
l = t;
t = t.right;
} else break;
}
/* assemble */
l.right = t.left;
r.left = t.right;
t.left = N.right;
t.right = N.left;
return t;
}
function insert(i, data, t, comparator) {
var node = new Node(i, data);
if (t === null) {
node.left = node.right = null;
return node;
}
t = splay(i, t, comparator);
var cmp = comparator(i, t.key);
if (cmp < 0) {
node.left = t.left;
node.right = t;
t.left = null;
} else if (cmp >= 0) {
node.right = t.right;
node.left = t;
t.right = null;
}
return node;
}
function split(key, v, comparator) {
var left = null;
var right = null;
if (v) {
v = splay(key, v, comparator);
var cmp = comparator(v.key, key);
if (cmp === 0) {
left = v.left;
right = v.right;
} else if (cmp < 0) {
right = v.right;
v.right = null;
left = v;
} else {
left = v.left;
v.left = null;
right = v;
}
}
return {
left: left,
right: right
};
}
function merge(left, right, comparator) {
if (right === null) return left;
if (left === null) return right;
right = splay(left.key, right, comparator);
right.left = left;
return right;
}
/**
* Prints level of the tree
*/
function printRow(root, prefix, isTail, out, printNode) {
if (root) {
out("" + prefix + (isTail ? '└── ' : '├── ') + printNode(root) + "\n");
var indent = prefix + (isTail ? ' ' : '│ ');
if (root.left) printRow(root.left, indent, false, out, printNode);
if (root.right) printRow(root.right, indent, true, out, printNode);
}
}
var Tree =
/** @class */
function () {
function Tree(comparator) {
if (comparator === void 0) {
comparator = DEFAULT_COMPARE;
}
this._root = null;
this._size = 0;
this._comparator = comparator;
}
/**
* Inserts a key, allows duplicates
*/
Tree.prototype.insert = function (key, data) {
this._size++;
return this._root = insert(key, data, this._root, this._comparator);
};
/**
* Adds a key, if it is not present in the tree
*/
Tree.prototype.add = function (key, data) {
var node = new Node(key, data);
if (this._root === null) {
node.left = node.right = null;
this._size++;
this._root = node;
}
var comparator = this._comparator;
var t = splay(key, this._root, comparator);
var cmp = comparator(key, t.key);
if (cmp === 0) this._root = t;else {
if (cmp < 0) {
node.left = t.left;
node.right = t;
t.left = null;
} else if (cmp > 0) {
node.right = t.right;
node.left = t;
t.right = null;
}
this._size++;
this._root = node;
}
return this._root;
};
/**
* @param {Key} key
* @return {Node|null}
*/
Tree.prototype.remove = function (key) {
this._root = this._remove(key, this._root, this._comparator);
};
/**
* Deletes i from the tree if it's there
*/
Tree.prototype._remove = function (i, t, comparator) {
var x;
if (t === null) return null;
t = splay(i, t, comparator);
var cmp = comparator(i, t.key);
if (cmp === 0) {
/* found it */
if (t.left === null) {
x = t.right;
} else {
x = splay(i, t.left, comparator);
x.right = t.right;
}
this._size--;
return x;
}
return t;
/* It wasn't there */
};
/**
* Removes and returns the node with smallest key
*/
Tree.prototype.pop = function () {
var node = this._root;
if (node) {
while (node.left) {
node = node.left;
}
this._root = splay(node.key, this._root, this._comparator);
this._root = this._remove(node.key, this._root, this._comparator);
return {
key: node.key,
data: node.data
};
}
return null;
};
/**
* Find without splaying
*/
Tree.prototype.findStatic = function (key) {
var current = this._root;
var compare = this._comparator;
while (current) {
var cmp = compare(key, current.key);
if (cmp === 0) return current;else if (cmp < 0) current = current.left;else current = current.right;
}
return null;
};
Tree.prototype.find = function (key) {
if (this._root) {
this._root = splay(key, this._root, this._comparator);
if (this._comparator(key, this._root.key) !== 0) return null;
}
return this._root;
};
Tree.prototype.contains = function (key) {
var current = this._root;
var compare = this._comparator;
while (current) {
var cmp = compare(key, current.key);
if (cmp === 0) return true;else if (cmp < 0) current = current.left;else current = current.right;
}
return false;
};
Tree.prototype.forEach = function (visitor, ctx) {
var current = this._root;
var Q = [];
/* Initialize stack s */
var done = false;
while (!done) {
if (current !== null) {
Q.push(current);
current = current.left;
} else {
if (Q.length !== 0) {
current = Q.pop();
visitor.call(ctx, current);
current = current.right;
} else done = true;
}
}
return this;
};
/**
* Walk key range from `low` to `high`. Stops if `fn` returns a value.
*/
Tree.prototype.range = function (low, high, fn, ctx) {
var Q = [];
var compare = this._comparator;
var node = this._root;
var cmp;
while (Q.length !== 0 || node) {
if (node) {
Q.push(node);
node = node.left;
} else {
node = Q.pop();
cmp = compare(node.key, high);
if (cmp > 0) {
break;
} else if (compare(node.key, low) >= 0) {
if (fn.call(ctx, node)) return this; // stop if smth is returned
}
node = node.right;
}
}
return this;
};
/**
* Returns array of keys
*/
Tree.prototype.keys = function () {
var keys = [];
this.forEach(function (_a) {
var key = _a.key;
return keys.push(key);
});
return keys;
};
/**
* Returns array of all the data in the nodes
*/
Tree.prototype.values = function () {
var values = [];
this.forEach(function (_a) {
var data = _a.data;
return values.push(data);
});
return values;
};
Tree.prototype.min = function () {
if (this._root) return this.minNode(this._root).key;
return null;
};
Tree.prototype.max = function () {
if (this._root) return this.maxNode(this._root).key;
return null;
};
Tree.prototype.minNode = function (t) {
if (t === void 0) {
t = this._root;
}
if (t) while (t.left) {
t = t.left;
}
return t;
};
Tree.prototype.maxNode = function (t) {
if (t === void 0) {
t = this._root;
}
if (t) while (t.right) {
t = t.right;
}
return t;
};
/**
* Returns node at given index
*/
Tree.prototype.at = function (index) {
var current = this._root;
var done = false;
var i = 0;
var Q = [];
while (!done) {
if (current) {
Q.push(current);
current = current.left;
} else {
if (Q.length > 0) {
current = Q.pop();
if (i === index) return current;
i++;
current = current.right;
} else done = true;
}
}
return null;
};
Tree.prototype.next = function (d) {
var root = this._root;
var successor = null;
if (d.right) {
successor = d.right;
while (successor.left) {
successor = successor.left;
}
return successor;
}
var comparator = this._comparator;
while (root) {
var cmp = comparator(d.key, root.key);
if (cmp === 0) break;else if (cmp < 0) {
successor = root;
root = root.left;
} else root = root.right;
}
return successor;
};
Tree.prototype.prev = function (d) {
var root = this._root;
var predecessor = null;
if (d.left !== null) {
predecessor = d.left;
while (predecessor.right) {
predecessor = predecessor.right;
}
return predecessor;
}
var comparator = this._comparator;
while (root) {
var cmp = comparator(d.key, root.key);
if (cmp === 0) break;else if (cmp < 0) root = root.left;else {
predecessor = root;
root = root.right;
}
}
return predecessor;
};
Tree.prototype.clear = function () {
this._root = null;
this._size = 0;
return this;
};
Tree.prototype.toList = function () {
return toList(this._root);
};
/**
* Bulk-load items. Both array have to be same size
*/
Tree.prototype.load = function (keys, values, presort) {
if (values === void 0) {
values = [];
}
if (presort === void 0) {
presort = false;
}
var size = keys.length;
var comparator = this._comparator; // sort if needed
if (presort) sort(keys, values, 0, size - 1, comparator);
if (this._root === null) {
// empty tree
this._root = loadRecursive(keys, values, 0, size);
this._size = size;
} else {
// that re-builds the whole tree from two in-order traversals
var mergedList = mergeLists(this.toList(), createList(keys, values), comparator);
size = this._size + size;
this._root = sortedListToBST({
head: mergedList
}, 0, size);
}
return this;
};
Tree.prototype.isEmpty = function () {
return this._root === null;
};
Object.defineProperty(Tree.prototype, "size", {
get: function get() {
return this._size;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Tree.prototype, "root", {
get: function get() {
return this._root;
},
enumerable: true,
configurable: true
});
Tree.prototype.toString = function (printNode) {
if (printNode === void 0) {
printNode = function printNode(n) {
return String(n.key);
};
}
var out = [];
printRow(this._root, '', true, function (v) {
return out.push(v);
}, printNode);
return out.join('');
};
Tree.prototype.update = function (key, newKey, newData) {
var comparator = this._comparator;
var _a = split(key, this._root, comparator),
left = _a.left,
right = _a.right;
if (comparator(key, newKey) < 0) {
right = insert(newKey, newData, right, comparator);
} else {
left = insert(newKey, newData, left, comparator);
}
this._root = merge(left, right, comparator);
};
Tree.prototype.split = function (key) {
return split(key, this._root, this._comparator);
};
return Tree;
}();
function loadRecursive(keys, values, start, end) {
var size = end - start;
if (size > 0) {
var middle = start + Math.floor(size / 2);
var key = keys[middle];
var data = values[middle];
var node = new Node(key, data);
node.left = loadRecursive(keys, values, start, middle);
node.right = loadRecursive(keys, values, middle + 1, end);
return node;
}
return null;
}
function createList(keys, values) {
var head = new Node(null, null);
var p = head;
for (var i = 0; i < keys.length; i++) {
p = p.next = new Node(keys[i], values[i]);
}
p.next = null;
return head.next;
}
function toList(root) {
var current = root;
var Q = [];
var done = false;
var head = new Node(null, null);
var p = head;
while (!done) {
if (current) {
Q.push(current);
current = current.left;
} else {
if (Q.length > 0) {
current = p = p.next = Q.pop();
current = current.right;
} else done = true;
}
}
p.next = null; // that'll work even if the tree was empty
return head.next;
}
function sortedListToBST(list, start, end) {
var size = end - start;
if (size > 0) {
var middle = start + Math.floor(size / 2);
var left = sortedListToBST(list, start, middle);
var root = list.head;
root.left = left;
list.head = list.head.next;
root.right = sortedListToBST(list, middle + 1, end);
return root;
}
return null;
}
function mergeLists(l1, l2, compare) {
var head = new Node(null, null); // dummy
var p = head;
var p1 = l1;
var p2 = l2;
while (p1 !== null && p2 !== null) {
if (compare(p1.key, p2.key) < 0) {
p.next = p1;
p1 = p1.next;
} else {
p.next = p2;
p2 = p2.next;
}
p = p.next;
}
if (p1 !== null) {
p.next = p1;
} else if (p2 !== null) {
p.next = p2;
}
return head.next;
}
function sort(keys, values, left, right, compare) {
if (left >= right) return;
var pivot = keys[left + right >> 1];
var i = left - 1;
var j = right + 1;
while (true) {
do {
i++;
} while (compare(keys[i], pivot) < 0);
do {
j--;
} while (compare(keys[j], pivot) > 0);
if (i >= j) break;
var tmp = keys[i];
keys[i] = keys[j];
keys[j] = tmp;
tmp = values[i];
values[i] = values[j];
values[j] = tmp;
}
sort(keys, values, left, j, compare);
sort(keys, values, j + 1, right, compare);
}
/**
* A bounding box has the format:
*
* { ll: { x: xmin, y: ymin }, ur: { x: xmax, y: ymax } }
*
*/
var isInBbox = function isInBbox(bbox, point) {
return bbox.ll.x <= point.x && point.x <= bbox.ur.x && bbox.ll.y <= point.y && point.y <= bbox.ur.y;
};
/* Returns either null, or a bbox (aka an ordered pair of points)
* If there is only one point of overlap, a bbox with identical points
* will be returned */
var getBboxOverlap = function getBboxOverlap(b1, b2) {
// check if the bboxes overlap at all
if (b2.ur.x < b1.ll.x || b1.ur.x < b2.ll.x || b2.ur.y < b1.ll.y || b1.ur.y < b2.ll.y) return null; // find the middle two X values
var lowerX = b1.ll.x < b2.ll.x ? b2.ll.x : b1.ll.x;
var upperX = b1.ur.x < b2.ur.x ? b1.ur.x : b2.ur.x; // find the middle two Y values
var lowerY = b1.ll.y < b2.ll.y ? b2.ll.y : b1.ll.y;
var upperY = b1.ur.y < b2.ur.y ? b1.ur.y : b2.ur.y; // put those middle values together to get the overlap
return {
ll: {
x: lowerX,
y: lowerY
},
ur: {
x: upperX,
y: upperY
}
};
};
/* Javascript doesn't do integer math. Everything is
* floating point with percision Number.EPSILON.
*
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/EPSILON
*/
var epsilon = Number.EPSILON; // IE Polyfill
if (epsilon === undefined) epsilon = Math.pow(2, -52);
/**
* Floating point comparator.
* @param {Number} a - value
* @param {Number} b - value
* @returns {Number} 0 when value a and b are equal, -1 when value a < b, 1 when value a > b
*/
var cmp = function cmp(a, b) {
if (Math.abs(a - b) < epsilon) return 0; // normal comparison
return a < b ? -1 : 1;
};
/**
* This class rounds incoming values sufficiently so that
* floating points problems are, for the most part, avoided.
*
* Incoming points are have their x & y values tested against
* all previously seen x & y values. If either is 'too close'
* to a previously seen value, it's value is 'snapped' to the
* previously seen value.
*
* All points should be rounded by this class before being
* stored in any data structures in the rest of this algorithm.
*/
var PtRounder = /*#__PURE__*/function () {
function PtRounder() {
_classCallCheck(this, PtRounder);
this.reset();
}
_createClass(PtRounder, [{
key: "reset",
value: function reset() {
this.xRounder = new CoordRounder();
this.yRounder = new CoordRounder();
}
}, {
key: "round",
value: function round(x, y) {
return {
x: this.xRounder.round(x),
y: this.yRounder.round(y)
};
}
}]);
return PtRounder;
}();
var CoordRounder = /*#__PURE__*/function () {
function CoordRounder() {
_classCallCheck(this, CoordRounder);
this.tree = new Tree(cmp); // preseed with 0 so we don't end up with values < Number.EPSILON
this.round(0);
} // Note: this can rounds input values backwards or forwards.
// You might ask, why not restrict this to just rounding
// forwards? Wouldn't that allow left endpoints to always
// remain left endpoints during splitting (never change to
// right). No - it wouldn't, because we snap intersections
// to endpoints (to establish independence from the segment
// angle for t-intersections).
_createClass(CoordRounder, [{
key: "round",
value: function round(coord) {
var node = this.tree.add(coord);
return node.key;
}
}]);
return CoordRounder;
}(); // singleton available by import
var rounder = new PtRounder();
/* Cross Product of two vectors with first point at origin */
var crossProduct = function crossProduct(a, b) {
return a.x * b.y - a.y * b.x;
};
/* Dot Product of two vectors with first point at origin */
var dotProduct = function dotProduct(a, b) {
return a.x * b.x + a.y * b.y;
};
/* Comparator for two vectors with same starting point */
var compareVectorAngles = function compareVectorAngles(basePt, endPt1, endPt2) {
var res = orient2d.orient2d(basePt.x, basePt.y, endPt1.x, endPt1.y, endPt2.x, endPt2.y);
if (res > 0) return -1;
if (res < 0) return 1;
return 0;
};
var length = function length(v) {
return Math.sqrt(dotProduct(v, v));
};
/* Get the sine of the angle from pShared -> pAngle to pShaed -> pBase */
var sineOfAngle = function sineOfAngle(pShared, pBase, pAngle) {
var vBase = {
x: pBase.x - pShared.x,
y: pBase.y - pShared.y
};
var vAngle = {
x: pAngle.x - pShared.x,
y: pAngle.y - pShared.y
};
return crossProduct(vAngle, vBase) / length(vAngle) / length(vBase);
};
/* Get the cosine of the angle from pShared -> pAngle to pShaed -> pBase */
var cosineOfAngle = function cosineOfAngle(pShared, pBase, pAngle) {
var vBase = {
x: pBase.x - pShared.x,
y: pBase.y - pShared.y
};
var vAngle = {
x: pAngle.x - pShared.x,
y: pAngle.y - pShared.y
};
return dotProduct(vAngle, vBase) / length(vAngle) / length(vBase);
};
/* Get the x coordinate where the given line (defined by a point and vector)
* crosses the horizontal line with the given y coordiante.
* In the case of parrallel lines (including overlapping ones) returns null. */
var horizontalIntersection = function horizontalIntersection(pt, v, y) {
if (v.y === 0) return null;
return {
x: pt.x + v.x / v.y * (y - pt.y),
y: y
};
};
/* Get the y coordinate where the given line (defined by a point and vector)
* crosses the vertical line with the given x coordiante.
* In the case of parrallel lines (including overlapping ones) returns null. */
var verticalIntersection = function verticalIntersection(pt, v, x) {
if (v.x === 0) return null;
return {
x: x,
y: pt.y + v.y / v.x * (x - pt.x)
};
};
/* Get the intersection of two lines, each defined by a base point and a vector.
* In the case of parrallel lines (including overlapping ones) returns null. */
var intersection$1 = function intersection(pt1, v1, pt2, v2) {
// take some shortcuts for vertical and horizontal lines
// this also ensures we don't calculate an intersection and then discover
// it's actually outside the bounding box of the line
if (v1.x === 0) return verticalIntersection(pt2, v2, pt1.x);
if (v2.x === 0) return verticalIntersection(pt1, v1, pt2.x);
if (v1.y === 0) return horizontalIntersection(pt2, v2, pt1.y);
if (v2.y === 0) return horizontalIntersection(pt1, v1, pt2.y); // General case for non-overlapping segments.
// This algorithm is based on Schneider and Eberly.
// http://www.cimec.org.ar/~ncalvo/Schneider_Eberly.pdf - pg 244
var kross = crossProduct(v1, v2);
if (kross == 0) return null;
var ve = {
x: pt2.x - pt1.x,
y: pt2.y - pt1.y
};
var d1 = crossProduct(ve, v1) / kross;
var d2 = crossProduct(ve, v2) / kross; // take the average of the two calculations to minimize rounding error
var x1 = pt1.x + d2 * v1.x,
x2 = pt2.x + d1 * v2.x;
var y1 = pt1.y + d2 * v1.y,
y2 = pt2.y + d1 * v2.y;
var x = (x1 + x2) / 2;
var y = (y1 + y2) / 2;
return {
x: x,
y: y
};
};
var SweepEvent = /*#__PURE__*/function () {
// Warning: 'point' input will be modified and re-used (for performance)
function SweepEvent(point, isLeft) {
_classCallCheck(this, SweepEvent);
if (point.events === undefined) point.events = [this];else point.events.push(this);
this.point = point;
this.isLeft = isLeft; // this.segment, this.otherSE set by factory
}
_createClass(SweepEvent, [{
key: "link",
value: function link(other) {
if (other.point === this.point) {
throw new Error("Tried to link already linked events");
}
var otherEvents = other.point.events;
for (var i = 0, iMax = otherEvents.length; i < iMax; i++) {
var evt = otherEvents[i];
this.point.events.push(evt);
evt.point = this.point;
}
this.checkForConsuming();
}
/* Do a pass over our linked events and check to see if any pair
* of segments match, and should be consumed. */
}, {
key: "checkForConsuming",
value: function checkForConsuming() {
// FIXME: The loops in this method run O(n^2) => no good.
// Maintain little ordered sweep event trees?
// Can we maintaining an ordering that avoids the need
// for the re-sorting with getLeftmostComparator in geom-out?
// Compare each pair of events to see if other events also match
var numEvents = this.point.events.length;
for (var i = 0; i < numEvents; i++) {
var evt1 = this.point.events[i];
if (evt1.segment.consumedBy !== undefined) continue;
for (var j = i + 1; j < numEvents; j++) {
var evt2 = this.point.events[j];
if (evt2.consumedBy !== undefined) continue;
if (evt1.otherSE.point.events !== evt2.otherSE.point.events) continue;
evt1.segment.consume(evt2.segment);
}
}
}
}, {
key: "getAvailableLinkedEvents",
value: function getAvailableLinkedEvents() {
// point.events is always of length 2 or greater
var events = [];
for (var i = 0, iMax = this.point.events.length; i < iMax; i++) {
var evt = this.point.events[i];
if (evt !== this && !evt.segment.ringOut && evt.segment.isInResult()) {
events.push(evt);
}
}
return events;
}
/**
* Returns a comparator function for sorting linked events that will
* favor the event that will give us the smallest left-side angle.
* All ring construction starts as low as possible heading to the right,
* so by always turning left as sharp as possible we'll get polygons
* without uncessary loops & holes.
*
* The comparator function has a compute cache such that it avoids
* re-computing already-computed values.
*/
}, {
key: "getLeftmostComparator",
value: function getLeftmostComparator(baseEvent) {
var _this = this;
var cache = new Map();
var fillCache = function fillCache(linkedEvent) {
var nextEvent = linkedEvent.otherSE;
cache.set(linkedEvent, {
sine: sineOfAngle(_this.point, baseEvent.point, nextEvent.point),
cosine: cosineOfAngle(_this.point, baseEvent.point, nextEvent.point)
});
};
return function (a, b) {
if (!cache.has(a)) fillCache(a);
if (!cache.has(b)) fillCache(b);
var _cache$get = cache.get(a),
asine = _cache$get.sine,
acosine = _cache$get.cosine;
var _cache$get2 = cache.get(b),
bsine = _cache$get2.sine,
bcosine = _cache$get2.cosine; // both on or above x-axis
if (asine >= 0 && bsine >= 0) {
if (acosine < bcosine) return 1;
if (acosine > bcosine) return -1;
return 0;
} // both below x-axis
if (asine < 0 && bsine < 0) {
if (acosine < bcosine) return -1;
if (acosine > bcosine) return 1;
return 0;
} // one above x-axis, one below
if (bsine < asine) return -1;
if (bsine > asine) return 1;
return 0;
};
}
}], [{
key: "compare",
value: // for ordering sweep events in the sweep event queue
function compare(a, b) {
// favor event with a point that the sweep line hits first
var ptCmp = SweepEvent.comparePoints(a.point, b.point);
if (ptCmp !== 0) return ptCmp; // the points are the same, so link them if needed
if (a.point !== b.point) a.link(b); // favor right events over left
if (a.isLeft !== b.isLeft) return a.isLeft ? 1 : -1; // we have two matching left or right endpoints
// ordering of this case is the same as for their segments
return Segment.compare(a.segment, b.segment);
} // for ordering points in sweep line order
}, {
key: "comparePoints",
value: function comparePoints(aPt, bPt) {
if (aPt.x < bPt.x) return -1;
if (aPt.x > bPt.x) return 1;
if (aPt.y < bPt.y) return -1;
if (aPt.y > bPt.y) return 1;
return 0;
}
}]);
return SweepEvent;
}();
// segments and sweep events when all else is identical
var segmentId = 0;
var Segment = /*#__PURE__*/function () {
/* Warning: a reference to ringWindings input will be stored,
* and possibly will be later modified */
function Segment(leftSE, rightSE, rings, windings) {
_classCallCheck(this, Segment);
this.id = ++segmentId;
this.leftSE = leftSE;
leftSE.segment = this;
leftSE.otherSE = rightSE;
this.rightSE = rightSE;
rightSE.segment = this;
rightSE.otherSE = leftSE;
this.rings = rings;
this.windings = windings; // left unset for performance, set later in algorithm
// this.ringOut, this.consumedBy, this.prev
}
_createClass(Segment, [{
key: "replaceRightSE",
value:
/* When a segment is split, the rightSE is replaced with a new sweep event */
function replaceRightSE(newRightSE) {
this.rightSE = newRightSE;
this.rightSE.segment = this;
this.rightSE.otherSE = this.leftSE;
this.leftSE.otherSE = this.rightSE;
}
}, {
key: "bbox",
value: function bbox() {
var y1 = this.leftSE.point.y;
var y2 = this.rightSE.point.y;
return {
ll: {
x: this.leftSE.point.x,
y: y1 < y2 ? y1 : y2
},
ur: {
x: this.rightSE.point.x,
y: y1 > y2 ? y1 : y2
}
};
}
/* A vector from the left point to the right */
}, {
key: "vector",
value: function vector() {
return {
x: this.rightSE.point.x - this.leftSE.point.x,
y: this.rightSE.point.y - this.leftSE.point.y
};
}
}, {
key: "isAnEndpoint",
value: function isAnEndpoint(pt) {
return pt.x === this.leftSE.point.x && pt.y === this.leftSE.point.y || pt.x === this.rightSE.point.x && pt.y === this.rightSE.point.y;
}
/* Compare this segment with a point.
*
* A point P is considered to be colinear to a segment if there
* exists a distance D such that if we travel along the segment
* from one * endpoint towards the other a distance D, we find
* ourselves at point P.
*
* Return value indicates:
*
* 1: point lies above the segment (to the left of vertical)
* 0: point is colinear to segment
* -1: point lies below the segment (to the right of vertical)
*/
}, {
key: "comparePoint",
value: function comparePoint(point) {
if (this.isAnEndpoint(point)) return 0;
var lPt = this.leftSE.point;
var rPt = this.rightSE.point;
var v = this.vector(); // Exactly vertical segments.
if (lPt.x === rPt.x) {
if (point.x === lPt.x) return 0;
return point.x < lPt.x ? 1 : -1;
} // Nearly vertical segments with an intersection.
// Check to see where a point on the line with matching Y coordinate is.
var yDist = (point.y - lPt.y) / v.y;
var xFromYDist = lPt.x + yDist * v.x;
if (point.x === xFromYDist) return 0; // General case.
// Check to see where a point on the line with matching X coordinate is.
var xDist = (point.x - lPt.x) / v.x;
var yFromXDist = lPt.y + xDist * v.y;
if (point.y === yFromXDist) return 0;
return point.y < yFromXDist ? -1 : 1;
}
/**
* Given another segment, returns the first non-trivial intersection
* between the two segments (in terms of sweep line ordering), if it exists.
*
* A 'non-trivial' intersection is one that will cause one or both of the
* segments to be split(). As such, 'trivial' vs. 'non-trivial' intersection:
*
* * endpoint of segA with endpoint of segB --> trivial
* * endpoint of segA with point along segB --> non-trivial
* * endpoint of segB with point along segA --> non-trivial
* * point along segA with point along segB --> non-trivial
*
* If no non-trivial intersection exists, return null
* Else, return null.
*/
}, {
key: "getIntersection",
value: function getIntersection(other) {
// If bboxes don't overlap, there can't be any intersections
var tBbox = this.bbox();
var oBbox = other.bbox();
var bboxOverlap = getBboxOverlap(tBbox, oBbox);
if (bboxOverlap === null) return null; // We first check to see if the endpoints can be considered intersections.
// This will 'snap' intersections to endpoints if possible, and will
// handle cases of colinearity.
var tlp = this.leftSE.point;
var trp = this.rightSE.point;
var olp = other.leftSE.point;
var orp = other.rightSE.point; // does each endpoint touch the other segment?
// note that we restrict the 'touching' definition to only allow segments
// to touch endpoints that lie forward from where we are in the sweep line pass
var touchesOtherLSE = isInBbox(tBbox, olp) && this.comparePoint(olp) === 0;
var touchesThisLSE = isInBbox(oBbox, tlp) && other.comparePoint(tlp) === 0;
var touchesOtherRSE = isInBbox(tBbox, orp) && this.comparePoint(orp) === 0;
var touchesThisRSE = isInBbox(oBbox, trp) && other.comparePoint(trp) === 0; // do left endpoints match?
if (touchesThisLSE && touchesOtherLSE) {
// these two cases are for colinear segments with matching left
// endpoints, and one segment being longer than the other
if (touchesThisRSE && !touchesOtherRSE) return trp;
if (!touchesThisRSE && touchesOtherRSE) return orp; // either the two segments match exactly (two trival intersections)
// or just on their left endpoint (one trivial intersection
return null;
} // does this left endpoint matches (other doesn't)
if (touchesThisLSE) {
// check for segments that just intersect on opposing endpoints
if (touchesOtherRSE) {
if (tlp.x === orp.x && tlp.y === orp.y) return null;
} // t-intersection on left endpoint
return tlp;
} // does other left endpoint matches (this doesn't)
if (touchesOtherLSE) {
// check for segments that just intersect on opposing endpoints
if (touchesThisRSE) {
if (trp.x === olp.x && trp.y === olp.y) return null;
} // t-intersection on left endpoint
return olp;
} // trivial intersection on right endpoints
if (touchesThisRSE && touchesOtherRSE) return null; // t-intersections on just one right endpoint
if (touchesThisRSE) return trp;
if (touchesOtherRSE) return orp; // None of our endpoints intersect. Look for a general intersection between
// infinite lines laid over the segments
var pt = intersection$1(tlp, this.vector(), olp, other.vector()); // are the segments parrallel? Note that if they were colinear with overlap,
// they would have an endpoint intersection and that case was already handled above
if (pt === null) return null; // is the intersection found between the lines not on the segments?
if (!isInBbox(bboxOverlap, pt)) return null; // round the the computed point if needed
return rounder.round(pt.x, pt.y);
}
/**
* Split the given segment into multiple segments on the given points.
* * Each existing segment will retain its leftSE and a new rightSE will be
* generated for it.
* * A new segment will be generated which will adopt the original segment's
* rightSE, and a new leftSE will be generated for it.
* * If there are more than two points given to split on, new segments
* in the middle will be generated with new leftSE and rightSE's.
* * An array of the newly generated SweepEvents will be returned.
*
* Warning: input array of points is modified
*/
}, {
key: "split",
value: function split(point) {
var newEvents = [];
var alreadyLinked = point.events !== undefined;
var newLeftSE = new SweepEvent(point, true);
var newRightSE = new SweepEvent(point, false);
var oldRightSE = this.rightSE;
this.replaceRightSE(newRightSE);
newEvents.push(newRightSE);
newEvents.push(newLeftSE);
var newSeg = new Segment(newLeftSE, oldRightSE, this.rings.slice(), this.windings.slice()); // when splitting a nearly vertical downward-facing segment,
// sometimes one of the resulting new segments is vertical, in which
// case its left and right events may need to be swapped
if (SweepEvent.comparePoints(newSeg.leftSE.point, newSeg.rightSE.point) > 0) {
newSeg.swapEvents();
}
if (SweepEvent.comparePoints(this.leftSE.point, this.rightSE.point) > 0) {
this.swapEvents();
} // in the point we just used to create new sweep events with was already
// linked to other events, we need to check if either of the affected
// segments should be consumed
if (alreadyLinked) {
newLeftSE.checkForConsuming();
newRightSE.checkForConsuming();
}
return newEvents;
}
/* Swap which event is left and right */
}, {
key: "swapEvents",
value: function swapEvents() {
var tmpEvt = this.rightSE;
this.rightSE = this.leftSE;
this.leftSE = tmpEvt;
this.leftSE.isLeft = true;
this.rightSE.isLeft = false;
for (var i = 0, iMax = this.windings.length; i < iMax; i++) {
this.windings[i] *= -1;
}
}
/* Consume another segment. We take their rings under our wing
* and mark them as consumed. Use for perfectly overlapping segments */
}, {
key: "consume",
value: function consume(other) {
var consumer = this;
var consumee = other;
while (consumer.consumedBy) {
consumer = consumer.consumedBy;
}
while (consumee.consumedBy) {
consumee = consumee.consumedBy;
}
var cmp = Segment.compare(consumer, consumee);
if (cmp === 0) return; // already consumed
// the winner of the consumption is the earlier segment
// according to sweep line ordering
if (cmp > 0) {
var tmp = consumer;
consumer = consumee;
consumee = tmp;
} // make sure a segment doesn't consume it's prev
if (consumer.prev === consumee) {
var _tmp = consumer;
consumer = consumee;
consumee = _tmp;
}
for (var i = 0, iMax = consumee.rings.length; i < iMax; i++) {
var ring = consumee.rings[i];
var winding = consumee.windings[i];
var index = consumer.rings.indexOf(ring);
if (index === -1) {
consumer.rings.push(ring);
consumer.windings.push(winding);
} else consumer.windings[index] += winding;
}
consumee.rings = null;
consumee.windings = null;
consumee.consumedBy = consumer; // mark sweep events consumed as to maintain ordering in sweep event queue
consumee.leftSE.consumedBy = consumer.leftSE;
consumee.rightSE.consumedBy = consumer.rightSE;
}
/* The first segment previous segment chain that is in the result */
}, {
key: "prevInResult",
value: function prevInResult() {
if (this._prevInResult !== undefined) return this._prevInResult;
if (!this.prev) this._prevInResult = null;else if (this.prev.isInResult()) this._prevInResult = this.prev;else this._prevInResult = this.prev.prevInResult();
return this._prevInResult;
}
}, {
key: "beforeState",
value: function beforeState() {
if (this._beforeState !== undefined) return this._beforeState;
if (!this.prev) this._beforeState = {
rings: [],
windings: [],
multiPolys: []
};else {
var seg = this.prev.consumedBy || this.prev;
this._beforeState = seg.afterState();
}
return this._beforeState;
}
}, {
key: "afterState",
value: function afterState() {
if (this._afterState !== undefined) return this._afterState;
var beforeState = this.beforeState();
this._afterState = {
rings: beforeState.rings.slice(0),
windings: beforeState.windings.slice(0),
multiPolys: []
};
var ringsAfter = this._afterState.rings;
var windingsAfter = this._afterState.windings;
var mpsAfter = this._afterState.multiPolys; // calculate ringsAfter, windingsAfter
for (var i = 0, iMax = this.rings.length; i < iMax; i++) {
var ring = this.rings[i];
var winding = this.windings[i];
var index = ringsAfter.indexOf(ring);
if (index === -1) {
ringsAfter.push(ring);
windingsAfter.push(winding);
} else windingsAfter[index] += winding;
} // calcualte polysAfter
var polysAfter = [];
var polysExclude = [];
for (var _i = 0, _iMax = ringsAfter.length; _i < _iMax; _i++) {
if (windingsAfter[_i] === 0) continue; // non-zero rule
var _ring = ringsAfter[_i];
var poly = _ring.poly;
if (polysExclude.indexOf(poly) !== -1) continue;
if (_ring.isExterior) polysAfter.push(poly);else {
if (polysExclude.indexOf(poly) === -1) polysExclude.push(poly);
var _index = polysAfter.indexOf(_ring.poly);
if (_index !== -1) polysAfter.splice(_index, 1);
}
} // calculate multiPolysAfter
for (var _i2 = 0, _iMax2 = polysAfter.length; _i2 < _iMax2; _i2++) {
var mp = polysAfter[_i2].multiPoly;
if (mpsAfter.indexOf(mp) === -1) mpsAfter.push(mp);
}
return this._afterState;
}
/* Is this segment part of the final result? */
}, {
key: "isInResult",
value: function isInResult() {
// if we've been consumed, we're not in the result
if (this.consumedBy) return false;
if (this._isInResult !== undefined) return this._isInResult;
var mpsBefore = this.beforeState().multiPolys;
var mpsAfter = this.afterState().multiPolys;
switch (operation.type) {
case "union":
{
// UNION - included iff:
// * On one side of us there is 0 poly interiors AND
// * On the other side there is 1 or more.
var noBefores = mpsBefore.length === 0;
var noAfters = mpsAfter.length === 0;
this._isInResult = noBefores !== noAfters;
break;
}
case "intersection":
{
// INTERSECTION - included iff:
// * on one side of us all multipolys are rep. with poly interiors AND
// * on the other side of us, not all multipolys are repsented
// with poly interiors
var least;
var most;
if (mpsBefore.length < mpsAfter.length) {
least = mpsBefore.length;
most = mpsAfter.length;
} else {
least = mpsAfter.length;
most = mpsBefore.length;
}
this._isInResult = most === operation.numMultiPolys && least < most;
break;
}
case "xor":
{
// XOR - included iff:
// * the difference between the number of multipolys represented
// with poly interiors on our two sides is an odd number
var diff = Math.abs(mpsBefore.length - mpsAfter.length);
this._isInResult = diff % 2 === 1;
break;
}
case "difference":
{
// DIFFERENCE included iff:
// * on exactly one side, we have just the subject
var isJustSubject = function isJustSubject(mps) {
return mps.length === 1 && mps[0].isSubject;
};
this._isInResult = isJustSubject(mpsBefore) !== isJustSubject(mpsAfter);
break;
}
default:
throw new Error("Unrecognized operation type found ".concat(operation.type));
}
return this._isInResult;
}
}], [{
key: "compare",
value:
/* This compare() function is for ordering segments in the sweep
* line tree, and does so according to the following criteria:
*
* Consider the vertical line that lies an infinestimal step to the
* right of the right-more of the two left endpoints of the input
* segments. Imagine slowly moving a point up from negative infinity
* in the increasing y direction. Which of the two segments will that
* point intersect first? That segment comes 'before' the other one.
*
* If neither segment would be intersected by such a line, (if one
* or more of the segments are vertical) then the line to be considered
* is directly on the right-more of the two left inputs.
*/
function compare(a, b) {
var alx = a.leftSE.point.x;
var blx = b.leftSE.point.x;
var arx = a.rightSE.point.x;
var brx = b.rightSE.point.x; // check if they're even in the same vertical plane
if (brx < alx) return 1;
if (arx < blx) return -1;
var aly = a.leftSE.point.y;
var bly = b.leftSE.point.y;
var ary = a.rightSE.point.y;
var bry = b.rightSE.point.y; // is left endpoint of segment B the right-more?
if (alx < blx) {
// are the two segments in the same horizontal plane?
if (bly < aly && bly < ary) return 1;
if (bly > aly && bly > ary) return -1; // is the B left endpoint colinear to segment A?
var aCmpBLeft = a.comparePoint(b.leftSE.point);
if (aCmpBLeft < 0) return 1;
if (aCmpBLeft > 0) return -1; // is the A right endpoint colinear to segment B ?
var bCmpARight = b.comparePoint(a.rightSE.point);
if (bCmpARight !== 0) return bCmpARight; // colinear segments, consider the one with left-more
// left endpoint to be first (arbitrary?)
return -1;
} // is left endpoint of segment A the right-more?
if (alx > blx) {
if (aly < bly && aly < bry) return -1;
if (aly > bly && aly > bry) return 1; // is the A left endpoint colinear to segment B?
var bCmpALeft = b.comparePoint(a.leftSE.point);
if (bCmpALeft !== 0) return bCmpALeft; // is the B right endpoint colinear to segment A?
var aCmpBRight = a.comparePoint(b.rightSE.point);
if (aCmpBRight < 0) return 1;
if (aCmpBRight > 0) return -1; // colinear segments, consider the one with left-more
// left endpoint to be first (arbitrary?)
return 1;
} // if we get here, the two left endpoints are in the same
// vertical plane, ie alx === blx
// consider the lower left-endpoint to come first
if (aly < bly) return -1;
if (aly > bly) return 1; // left endpoints are identical
// check for colinearity by using the left-more right endpoint
// is the A right endpoint more left-more?
if (arx < brx) {
var _bCmpARight = b.comparePoint(a.rightSE.point);
if (_bCmpARight !== 0) return _bCmpARight;
} // is the B right endpoint more left-more?
if (arx > brx) {
var _aCmpBRight = a.comparePoint(b.rightSE.point);
if (_aCmpBRight <