UNPKG

@knath2000/codebase-indexing-mcp

Version:

MCP server for codebase indexing with Voyage AI embeddings and Qdrant vector storage

52 lines (44 loc) 1.52 kB
// Test script to debug LangDB API call matching our implementation async function testLangDB() { const headers = { 'Content-Type': 'application/json', 'Authorization': `Bearer langdb_ZnJYWUJmZVFOQnVsV3E=`, 'x-api-key': 'langdb_ZnJYWUJmZVFOQnVsV3E=', 'x-project-id': 'ad29a93e-567e-4cad-a816-fff3d4215d2b' }; const body = { model: 'openai/gpt-4o-mini', messages: [ { role: 'system', content: 'You are a helpful assistant that ranks search results.' }, { role: 'user', content: 'Rank these results: [1, 2, 3]. Return JSON with rankedIndices array.' } ], stream: false }; console.log('Testing LangDB with headers:', Object.keys(headers)); console.log('Project ID:', headers['x-project-id']); try { const response = await fetch('https://api.us-east-1.langdb.ai/ad29a93e-567e-4cad-a816-fff3d4215d2b/v1/chat/completions', { method: 'POST', headers, body: JSON.stringify(body) }); console.log('Status:', response.status); console.log('Status Text:', response.statusText); if (!response.ok) { const errorText = await response.text(); console.log('Error Response:', errorText); throw new Error(`HTTP ${response.status}: ${response.statusText}`); } const result = await response.json(); console.log('Success! Response:', JSON.stringify(result, null, 2)); } catch (error) { console.error('Error:', error.message); } } testLangDB();