@knath2000/codebase-indexing-mcp
Version:
MCP server for codebase indexing with Voyage AI embeddings and Qdrant vector storage
26 lines (25 loc) • 884 B
TypeScript
export declare class VoyageClient {
private client;
private baseURL;
constructor(apiKey: string);
/**
* Generate embeddings for a single text or array of texts
*/
generateEmbeddings(input: string | string[], model?: string, inputType?: 'query' | 'document'): Promise<number[][]>;
/**
* Generate a single embedding for a text
*/
generateEmbedding(text: string, model?: string, inputType?: 'query' | 'document'): Promise<number[]>;
/**
* Generate embeddings in batches for large inputs
*/
generateEmbeddingsBatch(texts: string[], model?: string, inputType?: 'query' | 'document', batchSize?: number): Promise<number[][]>;
/**
* Get embedding dimension for a model
*/
getEmbeddingDimension(model: string): number;
/**
* Test the API connection
*/
testConnection(): Promise<boolean>;
}