UNPKG

@kitware/vtk.js

Version:

Visualization Toolkit for the Web

251 lines (197 loc) 10.8 kB
import macro from '../../macros.js'; import vtkSpline1D from './Spline1D.js'; import { BoundaryCondition } from './Spline1D/Constants.js'; var VTK_EPSILON = 0.0001; // ---------------------------------------------------------------------------- // vtkCardinalSpline1D methods // ---------------------------------------------------------------------------- function vtkCardinalSpline1D(publicAPI, model) { // Set our classname model.classHierarchy.push('vtkCardinalSpline1D'); // -------------------------------------------------------------------------- publicAPI.computeCloseCoefficients = function (size, work, x, y) { if (!model.coefficients || model.coefficients.length !== 4 * size) { model.coefficients = new Float32Array(4 * size); } var N = size - 1; for (var k = 1; k < N; k++) { var _xlk = x[k] - x[k - 1]; var _xlkp = x[k + 1] - x[k]; model.coefficients[4 * k + 0] = _xlkp; model.coefficients[4 * k + 1] = 2 * (_xlkp + _xlk); model.coefficients[4 * k + 2] = _xlk; work[k] = 3.0 * (_xlkp * (y[k] - y[k - 1]) / _xlk + _xlk * (y[k + 1] - y[k]) / _xlkp); } var xlk = x[N] - x[N - 1]; var xlkp = x[1] - x[0]; model.coefficients[4 * N + 0] = xlkp; model.coefficients[4 * N + 1] = 2 * (xlkp + xlk); model.coefficients[4 * N + 2] = xlk; work[N] = 3 * (xlkp * (y[N] - y[N - 1]) / xlk + xlk * (y[1] - y[0]) / xlkp); var aN = model.coefficients[4 * N + 0]; var bN = model.coefficients[4 * N + 1]; var cN = model.coefficients[4 * N + 2]; var dN = work[N]; // solve resulting set of equations. model.coefficients[4 * 0 + 2] = 0; work[0] = 0; model.coefficients[4 * 0 + 3] = 1; for (var _k = 1; _k <= N; _k++) { model.coefficients[4 * _k + 1] -= model.coefficients[4 * _k + 0] * model.coefficients[4 * (_k - 1) + 2]; model.coefficients[4 * _k + 2] = model.coefficients[4 * _k + 2] / model.coefficients[4 * _k + 1]; work[_k] = (work[_k] - model.coefficients[4 * _k + 0] * work[_k - 1]) / model.coefficients[4 * _k + 1]; model.coefficients[4 * _k + 3] = -model.coefficients[4 * _k + 0] * model.coefficients[4 * (_k - 1) + 3] / model.coefficients[4 * _k + 1]; } model.coefficients[4 * N + 0] = 1; model.coefficients[4 * N + 1] = 0; for (var _k2 = N - 1; _k2 > 0; _k2--) { model.coefficients[4 * _k2 + 0] = model.coefficients[4 * _k2 + 3] - model.coefficients[4 * _k2 + 2] * model.coefficients[4 * (_k2 + 1) + 0]; model.coefficients[4 * _k2 + 1] = work[_k2] - model.coefficients[4 * _k2 + 2] * model.coefficients[4 * (_k2 + 1) + 1]; } work[0] = (dN - cN * model.coefficients[4 * 1 + 1] - aN * model.coefficients[4 * (N - 1) + 1]) / (bN + cN * model.coefficients[4 * 1 + 0] + aN * model.coefficients[4 * (N - 1) + 0]); work[N] = work[0]; for (var _k3 = 1; _k3 < N; _k3++) { work[_k3] = model.coefficients[4 * _k3 + 0] * work[N] + model.coefficients[4 * _k3 + 1]; } // the column vector work now contains the first // derivative of the spline function at each joint. // compute the coefficients of the cubic between // each pair of joints. for (var _k4 = 0; _k4 < N; _k4++) { var b = x[_k4 + 1] - x[_k4]; model.coefficients[4 * _k4 + 0] = y[_k4]; model.coefficients[4 * _k4 + 1] = work[_k4]; model.coefficients[4 * _k4 + 2] = 3 * (y[_k4 + 1] - y[_k4]) / (b * b) - (work[_k4 + 1] + 2 * work[_k4]) / b; model.coefficients[4 * _k4 + 3] = 2 * (y[_k4] - y[_k4 + 1]) / (b * b * b) + (work[_k4 + 1] + work[_k4]) / (b * b); } // the coefficients of a fictitious nth cubic // are the same as the coefficients in the first interval model.coefficients[4 * N + 0] = y[N]; model.coefficients[4 * N + 1] = work[N]; model.coefficients[4 * N + 2] = model.coefficients[4 * 0 + 2]; model.coefficients[4 * N + 3] = model.coefficients[4 * 0 + 3]; }; // -------------------------------------------------------------------------- publicAPI.computeOpenCoefficients = function (size, work, x, y) { var options = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : {}; if (!model.coefficients || model.coefficients.length !== 4 * size) { model.coefficients = new Float32Array(4 * size); } var N = size - 1; // develop constraint at leftmost point. switch (options.leftConstraint) { case BoundaryCondition.DERIVATIVE: // desired slope at leftmost point is leftValue. model.coefficients[4 * 0 + 1] = 1.0; model.coefficients[4 * 0 + 2] = 0.0; work[0] = options.leftValue; break; case BoundaryCondition.SECOND_DERIVATIVE: // desired second derivative at leftmost point is leftValue. model.coefficients[4 * 0 + 1] = 2.0; model.coefficients[4 * 0 + 2] = 1.0; work[0] = 3.0 * ((y[1] - y[0]) / (x[1] - x[0])) - 0.5 * (x[1] - x[0]) * options.leftValue; break; case BoundaryCondition.SECOND_DERIVATIVE_INTERIOR_POINT: // desired second derivative at leftmost point is // leftValue times second derivative at first interior point. model.coefficients[4 * 0 + 1] = 2.0; if (Math.abs(options.leftValue + 2) > VTK_EPSILON) { model.coefficients[4 * 0 + 2] = 4.0 * ((0.5 + options.leftValue) / (2.0 + options.leftValue)); work[0] = 6.0 * ((1.0 + options.leftValue) / (2.0 + options.leftValue)) * ((y[1] - y[0]) / (x[1] - x[0])); } else { model.coefficients[4 * 0 + 2] = 0; work[0] = 0; } break; case BoundaryCondition.DEFAULT: default: // desired slope at leftmost point is derivative from two points model.coefficients[4 * 0 + 1] = 1.0; model.coefficients[4 * 0 + 2] = 0.0; work[0] = y[2] - y[0]; break; } for (var k = 1; k < N; k++) { var xlk = x[k] - x[k - 1]; var xlkp = x[k + 1] - x[k]; model.coefficients[4 * k + 0] = xlkp; model.coefficients[4 * k + 1] = 2 * (xlkp + xlk); model.coefficients[4 * k + 2] = xlk; work[k] = 3.0 * (xlkp * (y[k] - y[k - 1]) / xlk + xlk * (y[k + 1] - y[k]) / xlkp); } // develop constraint at rightmost point. switch (options.rightConstraint) { case BoundaryCondition.DERIVATIVE: // desired slope at rightmost point is rightValue model.coefficients[4 * N + 0] = 0.0; model.coefficients[4 * N + 1] = 1.0; work[N] = options.rightValue; break; case BoundaryCondition.SECOND_DERIVATIVE: // desired second derivative at rightmost point is rightValue. model.coefficients[4 * N + 0] = 1.0; model.coefficients[4 * N + 1] = 2.0; work[N] = 3.0 * ((y[N] - y[N - 1]) / (x[N] - x[N - 1])) + 0.5 * (x[N] - x[N - 1]) * options.rightValue; break; case BoundaryCondition.SECOND_DERIVATIVE_INTERIOR_POINT: // desired second derivative at rightmost point is // rightValue times second derivative at last interior point. model.coefficients[4 * N + 1] = 2.0; if (Math.abs(options.rightValue + 2) > VTK_EPSILON) { model.coefficients[4 * N + 0] = 4.0 * ((0.5 + options.rightValue) / (2.0 + options.rightValue)); work[N] = 6.0 * ((1.0 + options.rightValue) / (2.0 + options.rightValue)) * ((y[N] - y[size - 2]) / (x[N] - x[size - 2])); } else { model.coefficients[4 * N + 0] = 0; work[N] = 0; } break; case BoundaryCondition.DEFAULT: default: // desired slope at rightmost point is derivative from two points model.coefficients[4 * N + 0] = 0.0; model.coefficients[4 * N + 1] = 1.0; work[N] = y[N] - y[N - 2]; break; } // solve resulting set of equations. model.coefficients[4 * 0 + 2] /= model.coefficients[4 * 0 + 1]; work[0] /= model.coefficients[4 * N + 1]; model.coefficients[4 * N + 3] = 1; for (var _k5 = 1; _k5 <= N; _k5++) { model.coefficients[4 * _k5 + 1] -= model.coefficients[4 * _k5 + 0] * model.coefficients[4 * (_k5 - 1) + 2]; model.coefficients[4 * _k5 + 2] /= model.coefficients[4 * _k5 + 1]; work[_k5] = (work[_k5] - model.coefficients[4 * _k5 + 0] * work[_k5 - 1]) / model.coefficients[4 * _k5 + 1]; } for (var _k6 = N - 1; _k6 >= 0; _k6--) { work[_k6] -= model.coefficients[4 * _k6 + 2] * work[_k6 + 1]; } // the column vector work now contains the first // derivative of the spline function at each joint. // compute the coefficients of the cubic between // each pair of joints. for (var _k7 = 0; _k7 < N; _k7++) { var b = x[_k7 + 1] - x[_k7]; model.coefficients[4 * _k7 + 0] = y[_k7]; model.coefficients[4 * _k7 + 1] = work[_k7]; model.coefficients[4 * _k7 + 2] = 3 * (y[_k7 + 1] - y[_k7]) / (b * b) - (work[_k7 + 1] + 2 * work[_k7]) / b; model.coefficients[4 * _k7 + 3] = 2 * (y[_k7] - y[_k7 + 1]) / (b * b * b) + (work[_k7 + 1] + work[_k7]) / (b * b); } // the coefficients of a fictitious nth cubic // are the same as the coefficients in the first interval model.coefficients[4 * N + 0] = y[N]; model.coefficients[4 * N + 1] = work[N]; model.coefficients[4 * N + 2] = model.coefficients[4 * 0 + 2]; model.coefficients[4 * N + 3] = model.coefficients[4 * 0 + 3]; }; // -------------------------------------------------------------------------- publicAPI.getValue = function (intervalIndex, t) { var t2 = t * t; var t3 = t * t * t; return model.coefficients[4 * intervalIndex + 3] * t3 + model.coefficients[4 * intervalIndex + 2] * t2 + model.coefficients[4 * intervalIndex + 1] * t + model.coefficients[4 * intervalIndex + 0]; }; } // ---------------------------------------------------------------------------- // Object factory // ---------------------------------------------------------------------------- var DEFAULT_VALUES = {}; // ---------------------------------------------------------------------------- function extend(publicAPI, model) { var initialValues = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}; Object.assign(model, DEFAULT_VALUES, initialValues); vtkSpline1D.extend(publicAPI, model, initialValues); // Build VTK API macro.obj(publicAPI, model); vtkCardinalSpline1D(publicAPI, model); } // ---------------------------------------------------------------------------- var newInstance = macro.newInstance(extend, 'vtkCardinalSpline1D'); // ---------------------------------------------------------------------------- var vtkCardinalSpline1D$1 = { newInstance: newInstance, extend: extend }; export { vtkCardinalSpline1D$1 as default, extend, newInstance };